
RDAP
sorting-and-paging, partial-response and

reverse-search drafts

Mario Loffredo

IIT-CNR/Registro.it

REGEXT IETF 100, Singapore, November 13, 2017

Overview

 draft-loffredo-regext-rdap-sorting-and-paging-01

Loffredo, M., Martinelli, M., and S. Hollenbeck,

"Registration Data Access Protocol (RDAP) Query

Parameters for Result Sorting and Paging", October 2017

 draft-loffredo-regext-rdap-partial-response-00

Loffredo, M. and Martinelli, M., "Registration Data Access

Protocol (RDAP) Partial Response", October 2017

 draft-loffredo-regext-rdap-reverse-search-00

Loffredo, M. and Martinelli, M., "Registration Data Access

Protocol (RDAP) Reverse Search", October 2017

sorting-and-paging & partial-response: REST BOP

 REST services should offer capabilities for result

filtering, sorting, paging and subsetting in order to:

• minimize the traffic (requests/responses) on the net

• speed up the response time

• improve the precision of the queries and, consequently,

obtain more reliable results

• decrease the load of the server in the query processing

• spend less CPU time and memory on the client

sorting-and-paging & partial-response: RDAP status

 A search query can return a large result set

 The result set can be truncated according to the server

limits

 RDAP lacks of result filtering, sorting and paging

capabilities:

• you cannot restrict the result set by adding further search conditions

• you cannot obtain, in the response, the total number of the objects

found in order to evaluate the query precision

• you cannot specify possible sort criteria:

• to have the most relevant objects at the beginning of the result set

• to avoid the truncation of relevant results

• you cannot scroll the result set when result set is truncated

 Servers can only provide full responses

sorting-and-paging: proposal

 New parameters:

• count: a boolean value that allows to obtain in the response the number of objects
found

• sortby: a string value that allows to specify a sort order for the result set

• limit & offset: numeric values that allows to specify what portion of the entire result
set must be returned

 New properties:

• paging_count: the number of objects found

• paging_links: a ready-made reference to the next page of the result set

 RDAP conformance

• Servers returning paging_links or paging_count properties MUST include
“paging_level_0” in the rdapConformance array

 Alternative to offset

• cursor: an opaque URL-safe string representing a logical pointer to the first result of
the next page

• Proposed by Brian Mountford from Google

sorting-and-paging: samples

 paging_count and paging_links based on offset:
{

"rdapConformance": ["rdap_level_0","paging_level_0"],

...

"notices": [

{

"title":"Search query limits",

"type":"result set truncated due to excessive load",

"description": ["search results for domains are limited to 10"]

}

],

"paging_links": [

{

"value":"https://example.com/rdap/domains?name=*nr.com",

"rel":"next",

"href":"https://example.com/rdap/domains?name=*nr.com&limit=10&offset=10",

"title":"Result Pagination Link",

"type":"application/rdap+json"

}

],

"paging_count":"73",

"domainSearchResults": [...]

}

 paging_links based on cursor:
"paging_links": [

{

"value":"https://example.com/rdap/domains?name=*nr.com",

"rel":"next",

"href":"https://example.com/rdap/domains?name=*nr.com&limit=10&cursor=wJlCDLIl6KTWypN7T6vc6nWEmEYe99Hjf1XY1xmqV-M=",

"title":"Result Pagination Link",

"type":"application/rdap+json"

}

]

sorting-and-paging: offset vs. cursor

 Offset pagination

• is supported natively by major RDBMSs and most popular NoSQL databases

• provides maximum flexibility

• does not scale well in case of huge result sets (over 100,000 records)

• may return inconsistent pages when data are frequently updated
• but this is not the case of registration data

 Cursor-based pagination (a.k.a. keyset pagination or seek-method)

• scales well in case of huge result sets

• is difficult to implement
• is not natively supported by DBMSs

• requires at least one key field

• needs that all comparison and sort operations have to be reversed for backward pagination

• raises further issues when objects aggregate information from different data structures (e.g. RDAP entities)

• is not flexible
• does not allow to sort by any field and paginate the results

• does not allow to skip pages

• could be considered impractical
• time needed to build the current page could be much higher than the scrolling time

• will my RDAP server usually deal with huge result sets?

partial-response: concepts

 Instead of returning responses with all data fields, only a

subset is returned

 Two approaches:

• fields:

• is used by leading REST API providers (e.g. LinkedIn, Google, Facebook)

• the client declares explicitly the data fields to obtain in the response

• field set:

• is used in digital libraries and bibliographic catalogues

• the client declares a name identifying a server pre-defined set of data fields

partial-response: fields vs. field set

 fields:

• provides maximum flexibility
• clients can specify only the fields they need

• is not easy to implement
• fields have to be declared according to a given syntax

• arrays and deep nested objects may complicate both syntax definition and server processing of the query

• does not facilitate interoperability
• clients should perfectly know the structure of returned objects to declare valid list of fields

• raises additional issues according to server authorizations
• clients could request unauthorized fields and servers should define a strategy for providing a response: to

return an error or to return a response ignoring the unauthorized fields

 field set:

• is less flexible
• but, do RDAP users really need maximum flexibility?

• can be easily implemented

• facilitates interoperability
• servers can define some basic field sets which, if known, increase the probability to get valid responses

• fits better server authorizations
• the list of fields for each set (except “id”) can be different according to the access levels

• some field sets could be available only to some users

partial-response: proposal

 New parameter:

• fieldSet: a string value identifying a pre-defined set of fields

 Required values are:

• id: it contains only the “objectClassName” field and the field identifying the object
• it can be used when the client wants to obtain a collection of object identifiers

• brief: it contains the fields that can be included in a “short” response
• it can be used when the client is asking for a set of properties which gives a basic knowledge of each

object

• full: it contains all the information the server can provide for a particular object

 Additional considerations:

• brief and full field sets SHOULD be defined according to the access levels

• servers MAY implement additional field sets

• servers SHOULD also define a default field set

reverse-search: current state

 Reverse Whois is provided by many web applications

• users can find domain names starting from the owner details

 Registries already perform reverse searches

• registries adopt out-of-band solutions to provide registrars with

domain names related to contacts, nameservers or DNSSEC keys

due to:

• the loss of synchronization between the registrar data and the registry data

• the need of such data to perform massive EPP updates (e.g. changing the

contacts in a list of domains, etc.)

reverse-search: possible objections

 Potential privacy risks:

• ICANN, in its report about Next-Gen RDSs, points out that reverse

Whois is allowed:

• when it is driven by some permissible purposes

• if it provides policies to enforce security as well as terms and conditions of use

• RDAP relies on features available in other layers to provide security

services (RFC 7481)

 Impact on server processing:

• RDAP already supports searches

• the impact of both standard and reverse searches can be mitigated

by servers adopting ad hoc policies

• sorting-and-paging & partial-response

reverse-search: proposal

 New paths:

• domains?entityHandle=<entity handle search pattern>

• domains?entityFn=<entity name search pattern>

• Search patterns are the same as specified in section 3.2.3 of RFC 7482

 New parameter:

• entityRole: a string value identifying a specific entity role to restrict results

• Values are those detailed in section 10.2.4 of RFC 7483 (registrant, registrar,

technical, etc.)

 In RDAP, entities are in relationship with all searchable objects

• Evaluate the extension to the other paths (e.g. nameservers, entities)

Security considerations

 sorting-and-paging & partial-response

• Search query requires more server resources than lookup query
• this increases the risk of server resource exhaustion and subsequent denial of service due to abuse

• Risks can be mitigated by:
• restricting search functionality

• limiting the rate of search requests

• truncating the results in the response

• providing partial responses

• Truncation can result in a higher inefficiency if servers cannot:
• return the truncated results

• provide the most relevant results at the beginning of the result set

• The capabilities presented in these drafts support security without reducing
efficiency

 reverse-search

• RDAP servers could provide reverse-search capabilities only to restricted
communities

• Two possible scenarios are:
• servers provide reverse search only for registrars searching for their own domains

• prevent unauthorized users to start a reverse search from a registrant detail

For discussion

 sorting-and-paging

• How should sorting properties be defined? Is an IANA registry appropriate?

• How might new parameters work without the use of an RDBMS? Would a
server need to maintain state information across queries? If so, what are
the implications?

• Should RDAP specification reports both offset and cursor parameters and
let operators to implement pagination according to their needs, the user
access levels, the submitted queries?

 reverse-search

• Should reverse search be based on other entity details like email, phone,
country (code or name), city?

• Should reverse search be extended to the other types of searches?

Thanks for your attention!

Q & A

