
MPLS Segment Routing in IP
Networks

draft-bryant-mpls-unified-ip-sr
Stewart Bryant <stewart.bryant@gmail.com>

Adrian Farrel <afarrel@juniper.net>
John Drake <jdrake@juniper.net>

Jeff Tantsura <jefftant.ietf@gmail.com>

IETF-100, Singapore, November 2017

mailto:jdrake@juniper.net

Objective

Objectives

1. Tunnel MPLS-SR over an IP network

– To connect two MPLS-SR networks (e.g., data
centres)

2. Enable SR in legacy networks by tactically
introducing SR-capable nodes at strategic
points in the network.

3. It is not a specific objective, but the approach
is IPv4/v6 neutral.

Use Cases

SR-in-UDP Tunnel

IP Network

SR Domain SR Domain

Border
Router

Border
Router

IP Network

Legacy IP Router

SR-Capable Router Not In SID Stack

SR-Capable Router In SID Stack

Native IP Forwarding

Technical Summary

Overview

• Encapsulate a “normal” MPLS
SID stack in UDP in IP

• Address to next SR-capable
node in the SR path

• UDP destination port indicates
“MPLS below”

IP
Header

UDP
Header

MPLS
SID

Stack

Payload

• In summary, this is MPLS-over-UDP as RFC 7510

MPLS-SR-in-UDP Processing

• IGP and control plane just like MPLS-SR

• Source processing is just like MPLS-SR
– But encapsulate in UDP and IP to first router identified by first SID

• Legacy transit nodes
– It is just an IP packet, so simply forward it

• SR-capable transit nodes
– Process MPLS-SID stack as normal

– Encapsulate in UDP and IP and send to router identified by next SID

• Final hop just strips outer header and forwards payload
packet

IP Header

MPLS SIDs
Label Stack

IP Header

Payload

Src = Sending SR capable node

Dst = Next SR capable node

Next protocol = UDP

Stack of SIDs exactly like it is an
MPLS SR packet

Unchanged IP header and data
I.e., encapsulated packet

UDP Header Src Port = Entropy

Dst Port = MPLS-in-UDP

A Little More Detail

Advertising SIDs

• Advertisements are just like for MPLS SR
– IGP or BGP advertises

• Address of node or link

• Associated SID

– All SID types are supported

• Need to add advertisements in routing
protocol to specify
– Encapsulation Type

– PHP behaviour

Source Processing

• Build and impose MPLS-SR stack
• Encapsulate in UDP

– Dst Port = MPLS-in-UDP
– Src Port = Entropy

• Encapsulate in IP with
– Source as this node
– Destination address of first hop in SR stack

• Requires look-up to match SID to address
• At source, this lookup can use RIB, etc.

• FIB lookup and send
• (This all looks a lot like RFC 7510)

Transit Non-SR Processing

• Important that this mechanism can traverse
nodes that are not SR-capable
– Also, no special processing by SR nodes to which

the packet is not addressed

• It’s just an IP packet, so forward it

• ECMP entropy is achieved through the UDP
source port value set by source
– Established technique (RFC 7510)

• TTL decrements as usual

Transit SR Processing
• If the packet is addressed to me

– Otherwise just forward the packet as normal IP

• Find UDP inside
• Find UDP Dst port is “MPLS-in-UDP”
• Look at top of MPLS SR stack

– Extract SID and look up “next hop” IP address
– Pop label stack entry

• Re-encapsulate packet as MPLS-in-UDP-in-IP (just as source did)
– IP Src = this node
– IP Dst = next address as found from label lookup
– UDP Src Port = Entropy (ideally from received packet)
– UDP Dst Port = MPLS-in-UDP
– (SID stack is “shorter”)

• FIB lookup and send

Key Changes from -00

• Forwarding clarifications
– Transit node elements of procedure.

– Entropy handling.

– PHP processing described in detail.

– Clarification of egress processing.

– Processing of an erroneously received packet
described.

• Control Plane
– A summary of the existing control planes and

extension required to support PHP is provided.

Moving Forward

Additional Encapsulation Technologies

• This draft describes the use of UDP as the
encapsulation.

• There may be a need for other encapsulations
(VXLAN, GRE, IPSEC etc.)

• If there is such a need, the right approach is to
write up a data-plane specific solution for
each of these cases in separate RFCs as and
when there is an established need for that
encapsulation type.

Control Plane Separation

• The control plane solutions should be written
up independently of the data-plane.

• The description of each control plane should
specify the encapsulation technology as a
parameter and thus be usable in configuring
future encapsulation technologies as and
when they become important and are
documented.

Proposal

• This is a simple solution to a simple problem.

• It would be useful to have the problem
discussed in the SPRING WG and have experts
there flag up concerns and missing functions.

• In our view the solution to this problem
belongs in the MPLS WG.

• The authors request that this draft is adopted
in MPLS as description of the data-plane
aspects of this problem.

