
RACK: a time-based fast loss recovery
draft-ietf-tcpm-rack-02

Yuchung Cheng
Neal Cardwell

Nandita Dukkipati
Priyaranjan Jha

Google

IETF 100: Singapore, Nov 2017

https://tools.ietf.org/html/draft-ietf-tcpm-rack-02

What’s RACK (Recent ACK)?

Time-based loss inferences instead packet or sequence
counting

● Conceptually every sent packet has a timer
● All timers are constantly adjusted based on most

recent RTT sample
● A packet is retransmitted after RTT + reo_wnd

● RACK is about implementing this w/ one timer per
connection and ACK events

P1

P2

Retransmit P1

Expect ACK of P1
by then … wait
RTT/4 in case P1
was reordered

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

Tail Loss Probe (TLP)
● Problem

○ Tail drops are common on request/response
traffic

○ Tail drops lead to timeouts, which are often 10x
longer than fast recovery

○ 70% of losses on Google.com recovered via
timeouts

● Goal:
○ Reduce tail latency of request/response

transactions

● Approach
○ Convert RTOs to fast recovery
○ Solicit a DUPACK by retransmitting the last

packet in 2 SRTTs
○ Requires RACK to trigger fast recovery

P1

P2

Retransmit P1

After 2 SRTTs...
send TLP to
get SACK to start
RACK recovery
of a tail loss

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

TLP: P2

3

P0

ACK

Status updates

Deployments

● Linux, Google, NetFlix(BSD), Windows use RACK/TLP by default

Major changes since IETF 98

● Optimize paths with large BDP
● Optimize paths with frequent reorderings
● Fix a stalling issue due to middle-boxes

Large BDP paths
ACKs of doom on a long distance Google cloud transfer

● BDP = 10Gbps x 308ms = 385MB =~ 257K packets
● Both Linux SACK and RACK processing were O(n)

○ Write queue is a linked list w/ hint pointers
○ Worst case scans the entire queue
○ 4ms per ACK processing time

● Poor CPU efficiency and loss recovery
performance b/c CPU is saturated by ACK
processing:

Profile:
 29.89% [kernel] [k] tcp_rack_detect_loss
 24.57% perf [.] 0x0000000000045199
 4.64% libc-2.19.so [.] 0x0000000004c17ef1
 2.09% [kernel] [k] copy_user_enhanced_fast_string
...

Paced TCP CUBIC on a 10Gbps WAN path with RTT=308ms.
Fast recovery at end of initial slow start.

Solution: better data structures
SACK processing

● s/linked list/rb tree/ for O(log n) worst case

RACK processing

● Sender keeps a new list for (re)transmitted packets
○ Ordered by packet’s last tx tstamp
○ A packet is removed from the list if S/ACKed or deemed lost
○ O(1) upkeep

● For every ACK, checks only packets sent before the most recently acked
○ Fastest possible

● Both improvements are in Linux 4.15
○ Reduce per SACK processing by two orders of magnitude on large BDP

networks
○ TODO: update RACK draft

Paths with frequent reorderings
RACK uses static reo_wnd (min_RTT/4)

On a path that has frequent higher degree of
reordering

● Frequent false recoveries causing C.C. to slow
down

● Reverting cwnd upon detecting spurious
recovery (TCP Eifel) can’t help much: sender
enters another false recovery right after the
cwnd revert

TCP-BBR on 100Mbps w/ rand[15ms,25ms] RTT.
TCP is constantly in (false) recoveries (R is retransmission,
(D)SACK is purple)

Adapting reordering window with DSACK

Use DSACK as feedback on window under-estimation

● Receivers return a DSACK [RFC2883] upon
receiving a spurious retransmission

● Supported by Linux, MacOS/iOS, Windows

Init: reo_wnd = min_RTT/4
For every round trip w/ DSACK(s)

reo_wnd += min_RTT/4
reo_wnd = min(reo_wnd, SRTT)

Re-init reo_wnd after 16 DSACK-free recoveries

Q: why not measure reordering degree in time directly?
A: difficult in Linux b/c it merges SACK’d packets Same test with adaptive reo_wnd

https://tools.ietf.org/html/rfc2883

Mitigating broken middle-boxes for TLP

Some middle-boxes rewrote TCP header sequences but not
sequences in SACK options

● TLP rearmed TLP timer on any ACK
● The sender loops forever

○ TLP timer fires and send a probe packet
○ SACK of the probe arrives
○ SACK sequences are invalid but causes TLP

timer to be rearmed

Fixed in Linux 4.13+: only rearms TLP timer if the S/ACK after
the probe packet acknowledges new data or the probe
packet

Next steps

Vision: making TCP resilient and efficient to reordering and loss with one algorithm

- Better load-balancing (e.g. multi-paths, flowlets)
- Faster forwarding (e.g. parallel forwarding, wireless link layer optimization)
- Simpler transport with a time-based recovery

Work-in-progress

1. Optimize for frequent reordering and high BDP path
2. Demonstrate RACK/TLP can be standalone by default to retire DUPACK threshold

approach. I.e. one heuristic in TCP based on time.
3. Update the (expired) draft ...

