
Extension for protecting (D)TLS
handshakes against Denial of Service

draft-tiloca-tls-dos-handshake-01

Marco Tiloca, RISE SICS
Ludwig Seitz, RISE SICS
Maarten Hoeve, ENCS

Olaf Bergmann, Universitaet Bremen TZI

IETF 100, TLS WG, Singapore, November 16th, 2017

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 2

› Servers are vulnerable to Denial of Service against (D)TLS handshake

– Attack: repeatedly send ClientHello messages to victim servers

– Induce computation, handshake performance, and holding state open

› Cookie exchange

– Oriented to non on-path adversaries, complicates the attack performance

› Servers still exposed to on-path adversaries

– Minimally man-on-the-side (can read & inject; echo Cookies, IP spoofing)

– Maximally full active (can also stop traffic, hold state open at later stages)

› Attack impact

– Depends on protocol version and used key establishment mode

– Especially severe on resource-constrained DTLS servers in LLNs

Motivation

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 3

› Counteract the attack also when mounted by on-path adversaries

› New ClientHello extension “dos_protection”

– Intended for (D)TLS 1.2 and (D)TLS 1.3

– Including a Handshake Token opaque to the client

– The Handshake Token includes a Nonce and a MAC over the Nonce

› A Trust Anchor (TA)

– In a trust relation with the server

– Provides the client with the Handshake Token

› The server

– Checks that the extension is fresh and the MAC is valid

– Continues with the handshake only in case of positive checks

Goal and approach

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 4

› The server is associated with one TA only

› The server and the TA share a long-term key K_M

› The TA has a pairwise counter z_S per server

– Initialized to 0 upon the server’s registration at the TA

– Used to build the nonce for the Handshake Token

› The TA verifies the client to be authorized

– Authorization enforced on the TA or through further trusted parties

› Communications with the TA must be secured

– Specific means are out of scope

Protocol overview

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 5

Protocol overview

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 6

› The client contacts the TA

– Ask to start a new (D)TLS session with the server S

› The TA

– Uses the counter z_S as token_nonce

– Computes a MAC as HMAC(K_M, H(token_nonce))

– Builds the Handshake Token as {token_nonce, MAC}

– Provides the Handshake Token to the client

– Increments the counter z_S

› The Handshake Token is opaque to the client

– The specific semantic is only between the server and the TA

Client to TA

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 7

› The client

– Prepares a “dos_protection” extension including the Handshake Token

– Includes the extension in the ClientHello message

– Finalizes the ClientHello and starts the handshake with the server

› The server

– Checks that the extension is fresh, relying on token_nonce

– Recomputes the MAC for comparison with the received one

– In case of negative match, the server aborts the handshake

Client to Server

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 8

› Session resumption

– This extension is not strictly needed for resumption

– The server uses the existing association to assert client’s validity

– Anti-replay checks can rely on the Client Hello Recording mechanism

› Based on Section 7.4.1.4 of RFC5246

– Clients asking for resumption SHOULD use the same extensions

– The server would not process the extensions unless relevant

› The TA can provide also Resumption Tokens to the client

– Used for ClientHello messages sent for session resumption

– The server does not perform a replay check based on such tokens

Additional points (1/2)

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 9

› Replay-check based on the token_nonce

– A method relying on a sliding window is described in Section 7

– The window size trades detection accuracy with memory overhead

› Upon a wrap-around of counter z_S

– Avoid reusing {K_M, Nonce} pairs on the TA

– The TA MUST revoke K_M and provide the server with a new one

› Rate limit to nonce releases

– Prevent a client from quickly consuming a server’s nonce space

– Preserve the TA’s capability to serve other clients

Additional points (2/2)

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 10

› Framework for authentication and authorization in the IoT

– Based on building blocks including OAuth 2.0 and CoAP

– Actors involved are Authorization Server, Client, and Resource Server

– Profiles define the use of concrete transport and security protocols

› DTLS profile of ACE (*)

– Client and Server establish a DTLS channel

– Vulnerability to DoS against DTLS handshake is acknowledged

– Reference to this approach as possible counteraction

– The ACE Authorization Server acts also as Trust Anchor

(*) draft-ietf-ace-dtls-authorize-02

Related document in ACE

IETF 100 | Singapore | TLS WG | 2017-11-16 | Page 11

› Major changes from version -00

– Same overall approach, with greatly simplified design

– Improved threat model and security considerations

– Updates mostly based on a review from Eric Rescorla

› Further comments and feedback are welcome!

› Implementation for DTLS 1.2 in Californium/Scandium

– Proof-of-concept existing and aligned with version -00

– To be aligned with current design in version -01

Status and next steps

Thank you!

Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-tls-dos-handshake/

https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/
https://ericssonresearch.github.io/Multicast-OSCOAP/

