DTLS 1.3

draft-ietf-tls-dtls13-02

Eric Rescorla

Hannes Tschofenig

Nagendra Modadugu

Mozilla

Arm Limited

Google

ekr@rtfm.com

hannes.tschofenig@arm.com

nagendra@cs.stanford.edu

Changes since -01

- Short record headers
- Empty ACK and clarified ACK rules
- Reintroduce KeyUpdate because it now works with ACKs

Short headers 1: Shorten DTLSCiphertext

```
struct {
    ContentType opaque_type = 23; /* application_data */
    uint32 epoch_and_sequence;
    uint16 length;
    opaque encrypted_record[length];
} DTLSCiphertext;
```

- New format for DTLS encrypted traffic
- Can be used like DTLS 1.2 DTLSCiphertext
- Keyed on version negotiation as expected

Short headers 2: Special DTLSShortCiphertext

```
struct {
  uint16 short_epoch_and_sequence; // 001ESSSS SSSSSSSSS
  opaque encrypted_record[remainder_of_datagram];
} DTLSShortCiphertext;
```

- E == truncated epoch
- S == truncated sequence
- Can *only* be used
 - With 1-RTT data
 - When you have one record per packet

Reconstructing the epoch/sequence

Sequence reconstruction (same as QUIC):

Use full sequence number closest to seq of the highest successfully deprotected record.

Epoch:

If epoch low-order bits match, just decrypt
If epoch low-order bits match, use the epoch
which provides the closest reconstructed
sequence number.

Empty Acks

- Sometimes you can't decrypt part of a flight
 - E.g., you get EE before SH
- In these cases you can't ACK
 - And rely on the retransmit timeout
- In this case you should send an empty ACK
 - This shortcuts the retransmit

KeyUpdate

- Restored KeyUpdate mechanism
 - Works just like TLS 1.3
 - With ACK, this works properly
- When can you send with the new key?
 - Currently right away
 - * What about reordering?
 - * ... trial decryption or drop the packet
 - Alternative: can't send until ACKed
 - * Different than with TLS 1.3
 - * Arguably less complex (though complexity is on updater)

Remaining Open issues: None!

• WGLC?