
TLS 1.3

draft-ietf-tls-tls13-21

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 100 TLS 1



Agenda

• Middlebox issues (PR#1091)

• close_notify and half-close (PR#1092)

• SNI and resumption(PR#1080)

IETF 100 TLS 2



Middlebox issues

• Some middleboxes appear to be sad when you negotiate TLS 1.3

• Error rates (Firefox Beta versus Cloudflare)

– 2.2% for TLS 1.2

– 3.9% for TLS 1.3

• This means you need fallback to deploy TLS 1.3

• Proposal: make TLS 1.3 look like TLS 1.2 resumption

IETF 100 TLS 3



Emulate TLS 1.2 resumption part 1: Always

• Move version negotiation entirely into supported_versions

– ServerHello.version == 0x0303 (TLS 1.2)

• Restore the missing session_id and compression fields in

ServerHello

• Change the post-ServerHello record layer version to 0x0303

• Merge HRR and ServerHello into a single message with the

semantics distinguished by a special ServerHello.Random value.

• Implementations MUST ignore ChangeCipherSpec during

handshake

IETF 100 TLS 4



Emulate TLS 1.2 resumption part 2: Compatibility

Mode

• The client sends a fake session_id and the server echoes it

• The server sends ChangeCipherSpec messages after

ServerHello/HelloRetryRequest (so that the middlebox ignores any

”encrypted” data afterwards), and the client sends

ChangeCipherSpec after ClientHello. ClientHello

– Server’s ChangeCipherSpec SHOULD be sent when the client

sends the fake session_id (not in PR#1091)

IETF 100 TLS 5



Issues Raised

• Should we only have compatibility mode?

– We don’t need this for TLS 1.3/QUIC or DTLS

– It’s not entirely clear we need the client-side CCS

– At some point we may be able to stop sending server-side CCS

• Should we require the client to enforce CCS cardinality?

– Require CCS be present

– Require CCS to appear only once

– This complicates the implementation of the receiver

IETF 100 TLS 6



Interlude: Chrome Data from David Benjamin

Firefox data hopefully coming soon

IETF 100 TLS 7



Chrome initial draft 18 deployment

• No evidence of TLS 1.3 ClientHello intolerance.

supported_versions and GREASE did their job.

• TLS 1.3 ServerHello was a very different story.

• Successful handshakes to a TLS-1.3-capable service in Chrome

beta:

– TLS 1.2 - 98.3%

– Draft 18 - 92.3%

• Middleboxes are intolerant to TLS 1.3 ServerHello. This violates

TLS versioning rules: ClientHello is invariant, rest is

version-specific.

IETF 100 TLS 8



Middleboxes

• TLS-terminating middleboxes generally work fine with TLS 1.3.

– ”Just” a server and client connected back-to-back. Server half

negotiates TLS 1.2, client half only offers what it implements.

• Other middleboxes process TLS without terminating it. They then

try to parse unknown version-specific messages and break.

• This is an oversimplified picture. A lot of middleboxes are a mix of

the two strategies.

IETF 100 TLS 9



TLS 1.3 variants, round one
• ”Experiment” → PR 1091 without the record-layer version change.

• We tested what we could locally, then performed A/B tests in the

wild (1-RTT).

• Successful handshakes to a TLS-1.3-capable service in Chrome

beta:

– TLS 1.2 - 99.2%

– Draft 18 - 95.8%

– PR 1051 - 90.3%

– Experiment - 98.2%

– Experiment w/o client session ID - 95.4%

• Lots of user reports confirmed problems with each variant,

including some for Experiment.

IETF 100 TLS 10



TLS 1.3 variants, round two

• Reproduced Experiment problems and changed record version for

round 2.

• Successful handshakes to a TLS-1.3-capable service in Chrome

beta:

– TLS 1.2 - 98.6%

– PR 1091 - 98.8%

• Corroborated by HTTP-level metrics.

• No user reports of problems thus far.

IETF 100 TLS 11



close notify and half-close (PR#1092)

• Right now close_notify is sorta full-close

– Receiver has to flush outstanding untransmitted data

– And immediately send close_notify

• Not ideal

– Lots of implementations don’t do this

– Data may already be in flight

– Reasons people may want half-close

– Not clear why it’s there in the first place

• Proposal

– Allow implementations to keep sending after receiving

close_notify

– Backward compatible with previous behavior

IETF 100 TLS 12



SNI and Resumption (PR#1080)

• RFC 6066 totally prohibits resuming with different SNIs

• Implementations aren’t good about following this

• Proposal

– Client MUST only resume if SNI is in certificate

– Client SHOULD only resume if the SNI is the same

∗ No reason to think it will work anyway

– Leaves the door open for the server to say that you can resume

with different SNI

• Not entirely clear how to analyze this

– But it looks like we already have these problems with existing

implementations and HTTP coalescence

IETF 100 TLS 13



Next step

• Merge outstanding PRs (these and some editorial stuff)

• Issue -22

• Targeted WGLC?

IETF 100 TLS 14


