
Hashing to
Elliptic Curves

Nick Sullivan (nick@cloudflare.com)

Christopher A. Wood (cawood@apple.com)

CFRG

IETF 101, March 2018, London

draft-sullivan-cfrg-hash-to-curve

mailto:nick@cloudflare.com
mailto:cawood@apple.com

hash-to-curve - CFRG - IETF 101

Background
Hashing to elliptic curves is common

• Simple Password Exponential Key Exchange [Jablon96]

• Password Authenticated Key Exchange [BMP00]

• Boneh-Lynn-Shacham signatures [BLS01]

• Verifiable Random Functions (VRFs) [draft-irtf-cfrg-vrf]

• Privacy Pass [https://privacypass.github.io]

2

https://privacypass.github.io

hash-to-curve - CFRG - IETF 101

Try-and-Increment

3

 1. ctr = 0
 2. h = "INVALID"
 3. While h is "INVALID" or h is EC point at infinity:
 A. CTR = I2OSP(ctr, 4)
 B. ctr = ctr + 1
 C. attempted_hash = Hash(m || CTR)
 D. h = RS2ECP(attempted_hash)
 E. If h is not "INVALID" and cofactor > 1, set h = h^cofactor
 4. Output h

Make sure h is in the prime order subgroup

hash-to-curve - CFRG - IETF 101

(Non-)Requirements

Requirements

• Constant-time

• …?

Non-requirements

• Invertible

4

hash-to-curve - CFRG - IETF 101

Methods
Method Requirement

Icart q = 2 mod 3

SWU None

Simplified SWU q = 3 mod 4

Elligator2 q is large, has a point of order 2,
and j-invariant != 1728

5

hash-to-curve - CFRG - IETF 101

Interface & Notation

H2C(↵) : {0, 1}+ ! E

q = prime order of base field
↵ = arbitrary input

u = point of order 2 (Elligator2)
f(x) = curve equation
H(↵) = hash to prime order subgroup

hash-to-curve - CFRG - IETF 101

Icart

7

t = H(↵)

v = ((3A� t4)/6t)

x = (v2 � b� (t6/27))1/3 + (t2/3)

y = tx+ v

Output(x, y)

hash-to-curve - CFRG - IETF 101

Elligator2

8

r = H(↵)

d = �A/(1 + ur2)

e = f(d)(p�1)/2

u = ed� (1� e)A/u

Output(u, f(u))

hash-to-curve - CFRG - IETF 101

(Current) Recommendations

Curve Method

P-256 Simplified SWU

P-384 Icart

Curve25519 Elligator2

Curve448 Elligator2

9

hash-to-curve - CFRG - IETF 101

Open Tasks
• Complete cost analysis

• Add SWU details and implementation

• Include security reductions where possible

• Interface details: octet strings to integer point encodings

• Produce verifiable implementations

• Clarify mappings that are reversible — this is not always
desirable!

10

hash-to-curve - CFRG - IETF 101

Open Issues

• Always multiply by cofactor?

• How close to indistinguishable from random points is
needed?

hash-to-curve - CFRG - IETF 101

hash-to-curve - CFRG - IETF 101

Simplified SWU

13

t = H(↵)

x = �t2

x2 = (�b/a) · (1 + (1/(t2 + t)))

x3 = t · x2

h2 = f(x2)

h3 = f(x3)

Output(x2, h
(q+1)/4
2) if h2 is square, else(x3, h

(q+1)/4
3)

