&5 CHAINSPACE

A Scalable Smart
Contracts Platform

Shehar Bano
Postdoc, InfoSec group
University College London

s.bano@ucl.ac.uk
@thatBano

m
https://github.com/chainspace Mﬂ m
c) O

SSSSSSSSS

The Team

Mustafa Al-Bassam Alberto Sonnino
(UCL) (UCL)

Dave Hrycyszyn George Danezis
(constructiveproof) (UCL)

Why Chainspace?

4 N

& o i3
vV © hAs
NS /

m Blockchains are cool — but scale badly

Why Chainspace?

-~

K3
=5

- D
& o i
V Orz A

_ /
m Blockchains are cool — but scale badly

4 4

Transactions are Inputs are therefore
recorded on chain public

_ _
= Hard to operate on secret inputs

Why Chainspace?

Why Chainspace?

4 contribution |

Scalable smart contract platform |_ ,,!

Why Chainspace?

4 contribution |

Scalable smart contract platform l_—_,,!
p “?.

N

4 contribution Il

Supporting privacy | EE”E
=

Contents

3.
Scalability

A.
System Overview

2.
Privacy by Design

4.
Security Properties

5.
Performance

System Overview

= How Chainspace works?
= Nodes are organised into shards °

m Shards manage objects objects
Transaction P om e e e e e e e e e e e e e e e e m e m e m— -

p: procedure _ _
W inputs] Shard objects |status Shard objects | status
; : lreferlences ; o1 active o1 active

par: local parameters - r """"""""""""""" f """"""""""""""""
X: outputs SO N VTN I PR N O N 02 __________________________ e 2
lret: local returns : node| |[node| [node node| |node| |node
dep: dependencies |->: """""""""""""""""""""""""""""""

: node| |node node| |node

user

Objects

Transaction O S S —

p procedure - ,
W inputs Shard objects |status Shard objects | status :
i . Ireferlences : ~3 @l active o1 active |
par: local parameters ' r ------------------------------- r """""""""""""""""" '
x: outputs 2 N N B N B A B o2 1. s I T I O B e o2 . ol -
lret: local returns : node| |node| |node node| |[node| |[node ;
dep: dependencies |->: """"""""""""""""""""""""""""""""
node| |[node| ... node| |node| ...

user ; :

Objects

= Hold state in Chainspace (e.g. Bank Account, Train
Seat, Hotel Room).

m Object state is immutable.

m Objects may be in two meta-states, either active or
iInactive.

m Active objects are available to be operated on
through smart contract procedures.

= Inactive ones are retained for the purposes of audit
only.

Smart Contracts

m Contracts are special types of objects

m Contain executable information on how other objects
be manipulated

m Contracts contain procedures that define the logic
by which a number of objects are processed

m Procedures do not have to be pure functions, and
may be randomized, keep state or have side effects

Composition of Smart
Contracts

m A contract procedure may call a procedure of another
smart contract

= Allows the creation of a library of smart contracts from

different authors that act as utilities for other higher-
level contracts

Object-to-Shard Mapping

Transaction
P: procedure
e inputs
r: references
lpar: local parameters
X: outputs
lret: local returns
dep: dependencies

|->

user

objects

status

objects

status

Smart Contracts map
Objects to Shards

" How to map objects to shards?

The smart
contracts decide!

...

Transactions

Transaction O S S —
P procedure ‘ : :
W inputs Shard objects |status Shard objects | status|
i : Ireferlences o1 active o1 active
par: local parameters r ------------------------------- r """"""""""""""""" '
X: outputs |0 (| | 1 .| l.. o2 [... 11 ([1 L. 02 | . :
lret: local returns node| |node| |node node| |[node| |[node
dep: dependencies »: | —1 L— 1 L1 pepee b L1 L e

node node cam node node n

user

Transactions

m Instantiation of smart contracts

m Once a transaction is accepted in Chainspace
m all input objects ‘die’ (become inactive)
m all output objects are ‘born’ (become active)

Object 1 Object 2
Alice’s wallet Balance - 5 ’ Alice’s wallet
2 | Balance: 10 Chainspace transaction (a# | Balance: 5
Obiject 1: active Object 1: inactive

Obiject 2: nonexistant Object 2: active

Contents

3.
Scalability

A.
System Overview

2.
Privacy by Design

4.
Security Properties

5.
Performance

Checkers

m Every smart contract has a checker

e e

] smart contract

user side

node side

Checkers

m Checkers are pure functions (i.e., deterministic, and
have no side-effects), and return a Boolean value.

m A checker requires no secret inputs

m only has sufficient information to check transaction
validity (e.g., a zero-knowledge proof)

Privacy by Design

m [ransaction In classic blockchains

~ user | node

contract | <=

: i v . :
secret g | ’y; . % . |
data § g

Privacy by Design

m Chainspace transaction

 user j | " node
f _l execution

input .
. objects
s L
> |

secret —
~ data l

‘ output
. objects

Privacy by Design

m Chainspace transaction

hES
N

user j | " node
f _l execution

. input i
objzcts ‘ ®e 7,
' ° @ Z f >
— input & output
secre ’ ~ objects,
l proof of carrectness

output
objects

Privacy by Design

m Chainspace transaction

22— input & output =
secret objects,

dat
ata ptoof of correctnéss l
output
objects or

Example: Private E-petitions

m Legitimate user casts a vote without identitying herself

input & output
objects,

ptoof of gorrectnéss
output
objects

Check zero-knowledge proof that the
vote corresponds to an actual user
who possesses a valid ID (secret data)

Cast a vote

Contents

3.
Scalability

A.
System Overview

2.
Privacy by Design

4.
Security Properties

5.
Performance

Consensus

Transaction Fe == saeeeesaeeesesemeseseaesessesseseaesesaseesssssesessssescsssessssesssssssesssasaes
p procedure] 5 5 :
W inputs Shard objects |status Shard objects | status :
i : Ireferlences : o1 active o1 active | |
par: l|ocal parameters ' r ------------------------------- r ------------------------------- :
X: outputs N N N B T B T e 02 _____________ i B O R I D I T T - 2 _____________ o i
lret: local returns : node| |node| |node node| [node| [node ,
dep: dependencies ’-V: """""""""""""""""""""""""""""""""

node| [node node| |node

= |ansn) |anen

= How do nodes agree whether to accept or reject a
transaction?

Inter-Shard Consensus

Transaction
P: procedure
w: inputs
E: references
lpar: local parameters
X: outputs
lret: local returns
dep: dependencies

’->

user

Shard objects |status
o1 active
r 02
node node nodel [~
node| [node

Shard objects | status
o1 active
r 02
node node nodel [
node node

Inter-Shard Consensus

= Byzantine Fault Tolerant (BFT) protocol which
grauantees:

m Safety: All honest members of a shard of size 3f +
1, agree on a specific common seguence of
actions, despite some f malicious nodes within the
shard

= Liveness: \When agreement is sought, a decision or
sequence will eventually be agreed upon

Intra-Shard Consensus

Transaction O S S —

P procedure . .
W inputs Shard objects |status Shard objects | status :
i : Ireferlences : o1 active o1 active | |
par: local parameters ' r ------------------------------- r """"""""""""""""" .
X outputs 2 B U B T B Y oz | .. (1 V[1 1 1. 02 | . :
lret: local returns : node| |node| |node node| |[node| |[node ;
dep: dependencies ’-V: """""""""""""""""""""""""""""""""
node| |[node| ... node| |node| ...

user g :

Intra-Shard Consensus

>| Travel agent

Book hotel
room #12

In shard 1

Book train
seat #33

In shard 2

...

Shard bjects |status Shard bjects | stat
K " é"""‘"?'(?'t'"?" r Y .0 ;t
d d de| [~ N nod d de| [~

INntra-shard Consensus

= Atomic commit protocol

m A transaction is only accepted if all the concerned
shards agree, otherwise it is rejected

S-BAC Consensus Protocol

m How nodes reach consensus?
The S-BAC Protocol

4 N
Byzantine Atomic
Agreement \." J Commit
\ /
lock unlock

user \\ * * /o

Shard 1 —e BFT X = BFT —
(manage o1) \ >< ~></

Shard 2 ® BFT & ~® BFT &

(manage 02) \

Shard 3 o BFT

(manage 03)

S-BAC enables Scalability

The Wisdom behind S-BAC

[]
4 N
Only shards managing o7 and o2 Shard 1 and Shard 2 can work in
are reaching consensus parallel
N 2N
user \ /'
Shard 1 —@ BFT N -® BFT & &7
(manage o1) \ >< ></
Shard 2 ® BFT & =0 BFT L ——

(manage 02) \

Shard 3 = BFT

(manage 03)

Contents

3

Scalability

A.
System Overview

2.
Privacy by Design

4.
Security Properties

5.
Performance

Security Properties

= What does Chainspace guarantee?

m Honest Shard: among 3f+1 nodes, at most fare malicious.
= Malicious Shard: over fdishonest nodes.
m Chainspace properties:

Security Properties

= What does Chainspace guarantee?

m Honest Shard: among 3f+1 nodes, at most fare malicious.
= Malicious Shard: over fdishonest nodes.

m Chainspace properties:

-

Transparency h
Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

s

o J
g Integrity h
(Honest Shard)

Only valid & non-conflicting transactions

will be executed.
& J

\

Encapsulation

A smart contract cannot interfere with
objects created by another contract
(except if defined by that contract).

S

/

-

N

Non-Repudiation

Misbehaviour is detectable: there are
evidences of misbehaviour pointing to the
faulty parties or shards.

~

J

Security Properties

= What does Chainspace guarantee?

m Honest Shard: among 3f+1 nodes, at most fare malicious.
= Malicious Shard: over fdishonest nodes.

m Chainspace properties:

-

o

Transparency h
Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

J

4

_

Integrity
(Honest Shard)

Only valid & non-conflicting transactions
will be executed.

=

_J

-~

N

Encapsulation

A smart contract cannot interfere with
objects created by another contract
(except if defined by that contract).

~

J

-

N

Non-Repudiation

Misbehaviour is detectable: there are
evidences of misbehaviour pointing to the
faulty parties or shards.

~

J

Security Properties

= What does Chainspace guarantee?

m Honest Shard: among 3f+1 nodes, at most fare malicious.
= Malicious Shard: over fdishonest nodes.

m Chainspace properties:

.

_

Transparency

Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

=

_/

-

-

Integrity h

(Honest Shard)

Only valid & non-conflicting transactions
will be executed.

J

-~

N

Encapsulation

A smart contract cannot interfere with
objects created by another contract
(except if defined by that contract).

~

J

-

N

Non-Repudiation

Misbehaviour is detectable: there are
evidences of misbehaviour pointing to the
faulty parties or shards.

~

J

Hash-DAG Structure

m Objects and transactions naturally form a directed
acyclic graph (DAG)
m Directed graph: transactions take as input active
objects, render them inactive, and create a new set
of active output objects

m No cycles: Each object may only be created by a
single transaction

Object 1 ’ Object 2
Train seat #33 Reserve train seat Train seat #33
= Free Chainspace transaction Taken by Alice
" Object 1: active "' Object 1: inactive

Object 2: nonexistant Object 2: active

Hash-DAG Structure

m Every transaction T has an id

m id_T is Hash(all input info except outputs)
Transaction

P: procedure

w: inputs

rs references
lpar: local parameters
HR-+—outputs—
lret: local returns
dep: dependencies

T

Hash-DAG Structure

m Every transaction T has an id

m id_T is Hash(all input info except outputs)
Transaction

P: procedure

w: inputs

rs references

lpar: local parameters

HR-+—outputs—

lret: local returns

dep: dependencies
T

m Every object O has an id
m id_O is Hash(O [| id_T)

Hash-DAG Structure

m Given O, and id_O, it is possible to verity all
transactions and previous (now inactive) objects and
references that contribute to the existence of O

Security Properties

= What does Chainspace guarantee?

m Honest Shard: among 3f+1 nodes, at most fare malicious.
= Malicious Shard: over fdishonest nodes.

m Chainspace properties:

-

o

Transparency h
Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

J

-

-

Integrity h

(Honest Shard)

Only valid & non-conflicting transactions
will be executed.

s

J

-~

N

Encapsulation

A smart contract cannot interfere with
objects created by another contract
(except if defined by that contract).

~

J

_

Non-Repudiation

Misbehaviour is detectable: there are
evidences of misbehaviour pointing to the
faulty parties or shards.

=

_J

Auditability

Transaction O S S —

P procedure . .
W inputs Shard objects |status Shard objects | status :
i : Ireferlences : o1 active 01 active | |
par: local parameters ' r ------------------------------- r """"""""""""""""" .
X: outputs 2 I A B D B T e 2 . =100 1t 11 .| [2 |. il I
lret: local returns : node| |node| |node node| |[node| |[node ;
dep: dependencies |->: """"""""""""""""""""""""""""""""
node| |[node| ... node| |node| ...

user ; :

Node Hash-Chains

m Each node in a shard forms a Merkle tree containing
all transactions that have been accepted or rejected

!

H() H()

Node Hash-Chains

= Periodically, nodes within a shard consistently agree
to seal a checkpoint, as a block of transactions into
their hash chains

Block 1 Block 2 Block 3

Node Hash-Chains

= Periodically, nodes within a shard consistently agree
to seal a checkpoint, as a block of transactions into
their hash chains

Block 1 Block 2 Block 3

=g
(@) /'v‘
o))
V)

Data Data Data Data Data

Node Hash-Chains

= Periodically, nodes within a shard consistently agree
to seal a checkpoint, as a block of transactions into
their hash chains

Block 1 Block 2 Block 3 A

@) /'v‘
o))
V)

Data Data Data Data Data

Node Hash-Chains

= Periodically, nodes within a shard consistently agree
to seal a checkpoint, as a block of transactions into
their hash chains

Block 1 Block 2 Block 3 Block 4

= Auditing involves re-executing transactions and
comparing the result with the hash-chain

Contents

3.
Scalability

A.
System Overview

2.
Privacy by Design

4.
Security Properties

5.
Performance

Performance

= What did we implement?

-

S-BAC protocol
implemented in Java

Based on
BFT-SMaRt

~

Performance

= What did we implement?

-

.

Python contract
simulator

Helps developers
Simulation of the checker
No need for full deployment

~

-

S-BAC protocol
implemented in Java

Based on
BFT-SMaRt

~

Performance

= What did we implement?

4)
S-BAC protocol
implemented in Java
Based on
BFT-SMaRt
N J
4 N)

Pyth_on contract Everything is released as open source software
simulator
https://github.com/chainspace

Helps developers

Simulation of the checker
No need for full deployment ‘

N 2N /

Performance

= What did we implement?

K
Measured and tested on
Amazon AWS
_ J

Python contract
simulator

Helps developers
Simulation of the checker

No need for full deployment

.

4)
S-BAC protocol
implemented in Java
Based on
BFT-SMaRt
N J
4 N

Everything is released as open source software

https://github.com/chainspace

»

Performance

m How the number of shards influences the TPS?

400 — TPS vS Number of Shards

(OV)
Ul
o

w
o
o

N
Ul
(&)

N
o
o

=
Ul
o

Average transactions / second

=
o
o

—— 1 input
L :
50 1 2 inputs

2 4 6 8 10 12 14
Number of shards

TPS scales linearly with the number of shards

Performance

= How is the trade off between TPS and latency?

1.0 - _
0.8 -
> 0.6 -
= —8— 20 t/s
E 40 t/s
o —A— 60 t/s
0.4
—<& 80 t/s
—— 100 t/s
—e— 120 t/s
021 140 t/s
—o— 160 t/s
/ Probability vs Latency 180 t/s
00 N ,",l. 200 t/S
0 500 1000 1500 2000 2500

Client-perceived latency (ms)

Low latency even when the system is heavy loaded

Example Applications

Smart metering contrac

Platform for decision
making

Benchmarking and
evaluation

Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bassam*, Alberto Sonnino*, Shehar Bano*, Dave Hrycyszyn! and George Danezi

* University College London, United Kingdom
constructiveproof.com

Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-

itability, non-r iation and i i Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentral-
ized system. Unlike application specific distributed ledgers,
such as Bitcoin [Nak08] for a currency, or certificate trans-
parency [LLK13] for certificate verification, Chainspace offers
extensibility though smart contracts, like Ethereum [Wool4].
However, users expose to Chainspace enough information
about contracts and transaction semantics, to provide higher
scalability through sharding across infrastructure nodes: our
modest testbed of 60 cores achieves 350 transactions per
second, as compared with a peak rate of less than 7 trans-
actions per second for Bitcoin over 6K full nodes. Etherium
currently processes 4 transactions per second, out of theoretical
maximum of 25. Furthermore, our platform is agnostic as to
the smart contract language, or identity infrastructure, and
supports privacy features through modern zero-knowledge
techniques [BCCG16, DGFK14].

Unlike other scalable but ‘permissioned’ smart con-
tract platforms, such as Hyperledger Fabric [Cacl6] or
BigchainDB [MMM™ 16], Chainspace aims to be an ‘open’
system: it allows anyone to author a smart contract, anyone to
provide infrastructure on which smart contract code and state
runs, and any user to access calls to smart contracts. Further,
it provides ecosystem features, by allowing composition of
smart contracts from different authors. We integrate a value

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

system, named CSCoin, as a system smart contract to allow
for accounting between those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

e It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

e It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

e It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

e It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

e It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

Future Work

1. How to recover from malicious shards?

2. How can a smart contract creator avoid
dishonest shards ?

Future Work

3. How to bootstrap shards?

4. How to incentivise nodes?

Conclusions

4 contribution |

Scalable smart contract platform |_—! '

S sharding

" contribution II

Supporting privacy | EEHE
=

execution
S | checker

CHAINSPACE

Thanks
Q/A

@thatBano
s.bano@ucl.ac.uk
http://sheharbano.com

4 N
https://github.com/chainspace

N /

. THE ALAN
EPSRC decode TURING
e INSTITUTE

This work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and The Alan Turing Institute.

