gNMI Overview

NETCONF WG, IETF 101
robjs@google.com, on behalf of the gNMI team



mailto:robjs@google.com

Motivation

->

Inform IETF of open source development and implementations.
Particularly as an alternative to NETCONF/RESTCONF

Feed development and deployment experience back to IETF
Lessons learnt from production deployments

Invite interested parties to contribute to development
Protocol specification and reference implementation are open source

Not asking for adoption within NETCONF WG/IETF



What is gNMI?

=> Protocol for configuration manipulation and state retrieval.

€ Data handled by gNMI must be able to be described using a path consisting of element
names and map<string,string> attributes.
€ Norequirement for this to be YANG-modelled.

=> Built on top of gRPC - an open source framework developed by Google

and managed by CNCF.

€ RPC framework built on top of HTTP/2

€ Unary, server streaming, client streaming and bi-directional streaming RPCs
€ Multiplexing of RPCs over a single channel provided by library

=> Protobuf service definition, and encoding for payload.



gNMI RPCs (1)

-> Set

€ Manipulate the (writeable) state of a target.
€ Simplified transaction model - each unary Set RPC is a transaction.
€ No requirements for long-lived candidates - push staging of modification to client.

->» Subscribe

€ Streaming RPC for target to send state to client.
€ Immutable subscriptions with an overall mode:
e STREAM - “streaming telemetry” - long-lived push from device.
e POLL - client-requested streaming.
e ONCE - target advertises entire dataset and closes RPC.
€ STREAM data can be SAMPLE, ON_CHANGE or a mix (target defined) - cadence-based
sampling, and event-driven updates.
€ Critically for data fidelity, state is always time stamped at target




gNMI RPCs (Il)

> Get

€ Snapshot of path state at a particular time.
€ Typical use case is for configuration state retrieval.
€ Scaling implications of serialising large object for target.

->» Capabilities

€ Used to understand encodings and models that are supported by a target.



Extending gNMI

=> Collaborative approach for extensions - GitHub issue discussion.
€ Aiming to keep core specification confined to the common set of cases

=> Extensions can be carried per message.
€ Canbe used to extend protocol - e.g., proxying, master arbitration for writers.
€ Well known extensions where address multiple use cases.
€ Registered extensions (assigned ID, and opaque contents) for arbitrary extension.

- Intended only where expanding on existing RPC function.
€ New RPCs can be defined in an extension service - multiple services can run per device.



Lessons learnt through gNMI development.

->» Timestamping is critical.
€ Improves fidelity of telemetry - especially useful where devices implement caching.
€ gNMI's use of <path, value> in telemetry ensures this is simple to include.

-> Encoding of values is best done using native types.
€ Support JSON-encoding, but using 7951 encoding means that telemetry variables that are
64-bit integers become strings - not ideal in the collector.
€ Adopted native protobuf encodings, with a mapping from the schema types if required.

=>» Overall on-the-wire efficiency must be considered:
€ Significant volume of data on scaled systems (QoS, Interfaces) or large data sets (BGP RIB,

device RIB)
€ Prefixing approach allows significant data reduction.
€ Use of protobuf structure for aggregated datasets allows for binary encoding



Development Approach for gNMI

->» Specification

L 4 Essentially companion document for the protobuf service definition.

=> Reference tool implementations:
€ gnmi_cli - tool for interacting with gNMI implementations.
€ Fake target for use in testing.
€ Telemetry collector implementation mostly open source.
€ Reference server implementation being published.

=> In the future - compliance test suite.

€ Requires some knowledge of the underlying data tree supported, so will be use-case
specific.



Resources

= github.com/openconfig/gnmi - reference collector code, and protos.
=>» github.com/openconfig/reference - protocol specification.

=> github.com/google/gnxi - reference implementation for target, and
additional tooling.



