
gNMI Overview
NETCONF WG, IETF 101

robjs@google.com, on behalf of the gNMI team

1

mailto:robjs@google.com

Motivation

➔ Inform IETF of open source development and implementations.
Particularly as an alternative to NETCONF/RESTCONF

➔ Feed development and deployment experience back to IETF
Lessons learnt from production deployments

➔ Invite interested parties to contribute to development
Protocol specification and reference implementation are open source

➔ Not asking for adoption within NETCONF WG/IETF

2

What is gNMI?

➔ Protocol for configuration manipulation and state retrieval.
◆ Data handled by gNMI must be able to be described using a path consisting of element

names and map<string,string> attributes.
◆ No requirement for this to be YANG-modelled.

➔ Built on top of gRPC - an open source framework developed by Google
and managed by CNCF.
◆ RPC framework built on top of HTTP/2
◆ Unary, server streaming, client streaming and bi-directional streaming RPCs
◆ Multiplexing of RPCs over a single channel provided by library

➔ Protobuf service definition, and encoding for payload.

3

gNMI RPCs (I)

➔ Set
◆ Manipulate the (writeable) state of a target.
◆ Simplified transaction model - each unary Set RPC is a transaction.
◆ No requirements for long-lived candidates - push staging of modification to client.

➔ Subscribe
◆ Streaming RPC for target to send state to client.
◆ Immutable subscriptions with an overall mode:

● STREAM - “streaming telemetry” - long-lived push from device.
● POLL - client-requested streaming.
● ONCE - target advertises entire dataset and closes RPC.

◆ STREAM data can be SAMPLE, ON_CHANGE or a mix (target defined) - cadence-based
sampling, and event-driven updates.

◆ Critically for data fidelity, state is always time stamped at target
4

gNMI RPCs (II)

➔ Get
◆ Snapshot of path state at a particular time.
◆ Typical use case is for configuration state retrieval.
◆ Scaling implications of serialising large object for target.

➔ Capabilities
◆ Used to understand encodings and models that are supported by a target.

5

Extending gNMI

➔ Collaborative approach for extensions - GitHub issue discussion.
◆ Aiming to keep core specification confined to the common set of cases

➔ Extensions can be carried per message.
◆ Can be used to extend protocol - e.g., proxying, master arbitration for writers.
◆ Well known extensions where address multiple use cases.
◆ Registered extensions (assigned ID, and opaque contents) for arbitrary extension.

➔ Intended only where expanding on existing RPC function.
◆ New RPCs can be defined in an extension service - multiple services can run per device.

6

Lessons learnt through gNMI development.
➔ Timestamping is critical.

◆ Improves fidelity of telemetry - especially useful where devices implement caching.
◆ gNMI’s use of <path, value> in telemetry ensures this is simple to include.

➔ Encoding of values is best done using native types.
◆ Support JSON-encoding, but using 7951 encoding means that telemetry variables that are

64-bit integers become strings - not ideal in the collector.
◆ Adopted native protobuf encodings, with a mapping from the schema types if required.

➔ Overall on-the-wire efficiency must be considered:
◆ Significant volume of data on scaled systems (QoS, Interfaces) or large data sets (BGP RIB,

device RIB)
◆ Prefixing approach allows significant data reduction.
◆ Use of protobuf structure for aggregated datasets allows for binary encoding

7

Development Approach for gNMI
➔ Specification

◆ Essentially companion document for the protobuf service definition.

➔ Reference tool implementations:
◆ gnmi_cli - tool for interacting with gNMI implementations.
◆ Fake target for use in testing.
◆ Telemetry collector implementation mostly open source.
◆ Reference server implementation being published.

➔ In the future - compliance test suite.
◆ Requires some knowledge of the underlying data tree supported, so will be use-case

specific.

8

Resources
➔ github.com/openconfig/gnmi - reference collector code, and protos.

➔ github.com/openconfig/reference - protocol specification.

➔ github.com/google/gnxi - reference implementation for target, and
additional tooling.

9

