
1

Generic Application
Programming Interface (API) for

Window-Based Codes
draft-roca-nwcrg-generic-fec-api-01

Vincent Roca (Inria) (ed), Jonathan Detchart (ISAE-Supaéro)
Cédric Adjih (Inria), M. Pedersen (Steinwurf ApS)

I. Swett (Google)

NWCRG, IETF101, London

Status of the work
l I-D updated (yesterday)
❍includes 3 APIs for sliding window codes

❍from Vincent/Jonathan/Morten
❍independently developed
❍there’s running code behind each of them

❍plus link to an open-source, freely usable, C-language,
sliding window codec + protocol
❍Cédric (GardiNet): https://gitlab.inria.fr/GardiNet/liblc/
❍implemented differently (not as a standalone codec)

lA few comments after analyzing these APIs…

2

https://gitlab.inria.fr/GardiNet/liblc/

Which API? Reminder…
l the codec is a component of a much larger software

3

ß codec API à
session management()
encoding/decoding window()
set/get coding coefficient()
build coded symbol()
decode with rcvd src/rep symbol()

low level codec

signaling header creation / parsing
transmission / reception

packet management

memory management code rate adaptation management
tunnel management
congestion control
selective ACK creation / parsing

out of scope for this I-D

Question 1: what type of FEC codes?
lAPI compatible with different codes?

❍our position: YES

lAPI compatible with block and sliding window

codes?
❍our position: ONLY sliding window codes

❍detail: 2 APIs out of 3 restrict themselves to sliding window.

The 3rd one addresses both but result is not fully satisfying.

Comes from largely different approaches that could make API

way more complex…

lAPI compatible with end-to-end and in-network

recoding use-cases?
❍our position: YES

4

Question 2: should the ADU to source
symbols mapping be done by the codec?
l background:
❍it is FEC Scheme dependent
❍useful to address variable size ADUs
❍it has major impacts (parameters, implementation

complexity especially at a receiver)

l question: should it be hidden in the codec?
❍our position: leave it to the caller
❍consequence: API only handles source and repair symbols

5

Question 3: should the codec initialize and
process the source/repair headers?
l background:
❍e.g., an additional buffer filled by the codec upon encoding
❍hides more details inside the “codec”…
❍but it makes the “codec” do more than just the coding

part… It’s more a FEC Scheme (code + signalling)

l question: should it be hidden in the codec?
❍our position: leave it to the caller
❍the codec focusses on what matters: coding/decoding only

6

Question 4: should the codec bother with
timing aspects?
l background:
❍the source flow can have timing requirements (e.g., limited

validity period). Should the codec know about it?
❍e.g., decoding window vs. linear system size distinction

l question: should the codec consider timing req.?
❍our position: leave it to the caller
❍let the codec be agnostic of any timing aspect… Timing is an

application concept

7

Question 5: about hardware requirements

l is there any specificity to hardware codecs (e.g.,
FPGA) that should be considered?
❍it was a good IETF 100 comment...
❍…but none of us has any experience

l any opinion?

8

To sum up
l choosing where to place API is not trivial
❍we design an API to a low level codec, not to a FEC

Scheme

l next step…
❍start with actual design

9

ß codec API à
low level codec

out of scope for this I-D

FEC scheme

