
Coding for QUIC
draft-swett-nwcrg-coding-for-quic-00

Ian Swett 
Marie-José Montpetit

Vincent Roca
IETF 101 London



Adding Coding to QUIC
• Top level requirements

– Must not change QUIC v1
• Use proposed(PR#1072) extension mechanism to negotiate

– Agnostic WRT the code
• Can be a block or sliding window code to be negotiated
• More than one code could be available to a QUIC session

– Coding takes place within a stream (reusing existing header 
fields plus a new frame type) or potentially across a few 
streams
• This is motivated by the fact that not all streams need to 
be coded

• Control frames are typically not as latency sensitive
– Coding is end-to-end within encryption (like QUIC)

• Re-encoding only possible with trusted middleboxes
– Coding happens before encryption

• Coding does not interfere with encryption

data -> encoding -> encryption

https://github.com/quicwg/base-drafts/pull/1072


To Code or not to Code

• Some streams maybe coded, some not
• Coding negotiated in QUIC 
handshake

• One or more coding extensions are 
offered, allowing 1 or more to be 
negotiated
– Final decision on which to use based 
on application or operational 
decisions



Framing

• New QUIC frame is defined
 - type: Repair symbol with coding type

- stream ID: Stream ID being repaired

- offset: The first source symbol in the 
window

- data length: total bytes of coding

Extension:
Repeated Stream ID and offset



Coding Symbols (1)

• Original idea: QUIC packets numbers
– Packets are lost, so protect that 
unit

• But:
– Coding can’t change QUIC Packet Numbers
– Want to allow

• Non-consecutive packet protection
• “Holes” in the sequence not due to losses

– ie: Path migration

– Could exceed MTU when adding coding 
overhead

– Multipath makes it more complex



Coding Symbols (2)

• New idea (update to the draft):
– Use an extension frame that 
references one or more streams

• Only protects latency sensitive 
data

• Re-uses existing stream send 
and receive buffers to recover.



Coding Symbols (3)

• New(er) idea:
– Define an extension frame that 
replaces a Stream with coded data.

• Allows any type of code.
• Avoids interaction with QUIC’s 
retransmission based recovery.

• Allows maximum flexibility 
during experimentation.



Next Steps (1)

• Finalize the formatting/initial 
design:
– Use QUIC's extension mechanism.
– PR#1072

• Choose a sample code
– Raptor one option
– RS is already open source

• Implement in picoquic?

https://github.com/quicwg/base-drafts/pull/1072


Next Steps (2)

• Agree on an API to allow 
different codes to be used 
without large code changes.

• draft-roca-nwcrg-generic-fec-ap
i-01?

https://tools.ietf.org/html/draft-roca-nwcrg-generic-fec-api-01
https://tools.ietf.org/html/draft-roca-nwcrg-generic-fec-api-01


Next Steps (3)

• Make this a RG item?
– Or

• Migrate to QUIC WG?
– Or

• Wait for experimentation?



QUESTIONS?

Ianswett@google.com

marie@mjmontpetit.com

vincent.roca@inria.fr

mailto:Ian.swett@google.com
mailto:marie@mjmontpetit.com
mailto:vincent.roca@inria.fr

