
Tom Herbert <tom@quantonium.net>

Firewall & Service Tickets
FAST

draft-herbert-fast-01

Goal

A method to allow applications to
signal the network for services it
wants applied to packets that is secure,
expressive, not spoofable, deployable,
efficient, dynamic, requires no DPI, doesn’t
disclose internals of the network, and works
with any transport protocol

Where we are today
● Diffserv allows application to set QoS-- lacks

granularity, security, and enforcement
● DPI into application layer data-- obsoleted by increased

use of TLS, has myriad of issues when stateful
● SPUD/PLUS proposals-- requires UDP, flow state, DPI,

and global definition of service characteristics
● Ad hoc mechanisms-- e.g. proposals to encode

network characteristics in TCP option
● Other in-band signaling

(draft-han-6man-in-band-signaling-for-transport-qos)

Tickets solution
They’re pretty much what you think!

Each packet bears a ticket

Ticket gives right of entry into the
network and describes the services
granted to the bearer

Ticket agents

● Applications requests tickets for
for flows from a ticket agent in
the local network

● A ticket request describes desired services
in an expressive and rich language

● Ticket agent issues ticket for host to attach
to packets

Each packet has a ticket.
Ticket gives right of entry into the network and
describes the services granted

Using tickets

● On ingress into network a
node interprets the ticket

● If it’s valid, the packet is allowed to enter the
network and specified services are applied

● Services are implemented by methods
○ Diff-serv marking, segment routing encap.
○ Network slices, SFC, NFV, etc.

“Round trip” tickets

● Tickets must be applied in both
directions of a flow

● To be stateless we need the
remote peer to attach a return ticket to its
packets

● Solution is that peer reflects received tickets
without trying to interpret them

Ticket security

● Non-transferable
● Cannot be forged
● Have an expiration time
● Can’t be interpreted by anyone except by the

network in which they were issued (basically
they are encrypted)

What ticket flow might look like

InternetProvider ProviderHost

Ticket
agent

Application
attaches
ticket

Ticket
interpreted in
local network

Ticket ignored
in external
networks

Reflected ticket
ignored in external
networks

Reflected ticket
interpreted in
local network

Reflected
ticket is
verified per
flow

Ticket reflected
at peer host in
return packets

Host

Example for video chat service

Application client
(ticket manager)

FAST ticket
agent

a. FaST ticket request: e.g video
chat with 30 FPS, 1080p , minimal
delay 50 msecs

b. Ticket reply

1. Send packets with
ticket attached to
packet

Service mapper

2. Service mapper
maps ticket to SFC to
cross provider network

3.,7. Packet forwarded
through core. Services
applied, e.g. by NFV, SFC,
diffserv (both directions)

Ticket aware
firewall / service

mapper

Internet

Application server

4. Ticket is reflected at
peer host in reply
packets

6. Gateway maps
ingress packet
with ticket to SFC

Provider

5. Firewall validates
ticket:
 - Fresh: allow
 - Old: rate limit
 - Invalid: drop

Bidirectional use of tickets

● Each side can use tickets
● Core network is oblivious to tickets
● Up to two tickets/packet (one for each direc.)

○ One not reflected
○ One reflected

● Ticket is for local network if:
○ Destination address is local and was ticket reflected
○ Source address is local and ticket not reflected

Some specifics

● Tickets encoded in IPv6 Destination options
● They have network specific encoding
● Likely encrypted, where only issuing network

has the key
● Have an expiration time (network clock)

○ Valid tickets: allow to pass
○ Old tickets: allow but maybe rate limit
○ Expired or invalid ticket: drop packet

Option format

● Option type: 0x4F* for unmodifiable, 0x6F* for
modifiable option

● Data length: Normal option length
● Type: 0 for don’t reflect, 1 for reflect, 2 for

reflected ticket
● Ticket: ticket data

 Data length ReservedOption type Type

Ticket

Example ticket data

● Expiration: time ticket expires per the clock of the
local network

● Verification data (e.g. HMAC)
● Type of ticket (e.g. flags, profile index, fields)
● Profile index- index into a table of service profiles

Expiration

Verification data

Profile indexType

Control plane
● Applications and ticket agent speak a protocol
● Ticket requests

○ Source and destination of communication
○ Desired services (low latency, real-time video,

peak throughput, etc.)
○ High level protocols (XML, REST, etc.)

● Tickets reply
○ Expiration time
○ Opaque ticket to attach to packets

Components

Host
Ticket manager

Provider network

Mgmt. console

Ticket agent Service mapper & firewall

Internet

Service mapper & firewall

NFV,
SFC here

Apps

Host

 Legend:
Datapath SW

Control SW

UE/applications

Service network

Host implementation
● OS

○ Enable application setting of tickets. Use sockets
APIs to extension headers

○ Library to for applications to talk to ticket manager
● Applications

○ Use library API to request tickets
○ Use API to attach tickets to packets

● Server reflection
○ Automatic reflection in kernel for stateful protocols
○ Connectionless protocols use API to get/set EH

Network support
● Ticket agents can be standalone network processes
● Firewalls and service mappers

○ Modified to speak to tickets agent for configuration
○ Implement ticket validation and service mapping
○ Likely want a ticket cache so don’t have to go

through full validation for every packet

Fallbacks for EH drop
● Destination reachable, but tickets not reflected

○ Tickets usable in one direction
○ Set “ticket state” on ingress/egress router

● Packets with EH dropped to destination
○ Happy Eyeballs for extension headers
○ Proposed ICMP errors may help
○ Application stops sending tickets
○ Set quasi “ticket state” on edge devices for

tickets seen

Thank you!

