IPv6 Mesh over Bluetooth(R) Low Energy using IPSP

draft-ietf-6lo-blemesh-03

Carles Gomez, S. M. Darroudi

Universitat Politècnica de Catalunya

Teemu Savolainen

DarkMatter

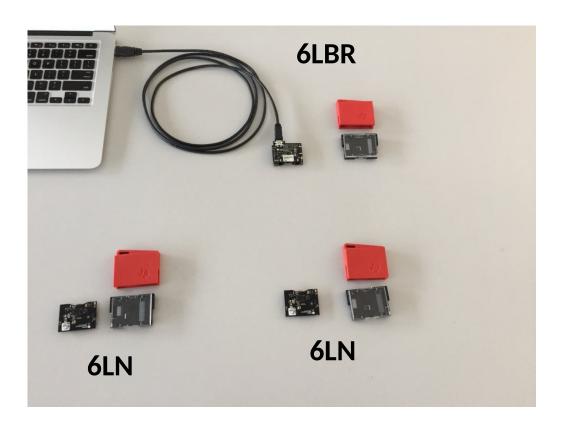
Michael Spörk

Graz University of Technology

IETF 102 - Montreal, July 2018

Status (I)

- draft-ietf-6lo-blemesh-03
 - Last revision, July 2018


- Not updated between Sept 2017 July 2018
 - 02 was considered stable
 - Need to validate the draft by means of running code before requesting WGLC
 - Slow progress since then
 - Several reasons

Status (II)

- Two paths for implementing the draft
 - 1. Using Raspberry Pls, BlueZ (Linux BLE stack) as basis
 - RFC 7668: One master (6LBR), single slave (6LN) running
 - RFC 7668: One master (6LBR), several slaves (6LNs) not working
 - » BlueZ issue
 - 2. Using BLEach as basis
 - RFC 7668 open source implementation for Contiki
 - One master (6LBR) and several slaves (6LNs) running!

Status (III)

• BLEach RFC 7668 scenario

- CC2650 devices, Contiki OS
- Basis for our implementation work

Updates in -03 (I/VIII)

- New author
 - Michael Spörk, Graz University of Technology (Austria)
 - Main author of BLEach
- New contributor
 - Carlo Alberto Boano, Graz University of Technology (Austria)
- In -02, we assumed already established BLE connections
- In -03, we detail relationship between 6LoWPAN roles and IPSP roles for connection establishment
 - Added text in 3.3.2 (Neighbor Discovery)
 - Added Appendix
 - Example of 3.3.2

Updates in -03 (II/VIII)

- 3.3.2. Neighbor Discovery, item 3.b)
 - Section 6.2 of RFC 6775, for dynamic config. scenarios
 - 6LR comes up as a non-router
 - 6LR waits for an RA to configure its own interface address first, and turns to a router
 - In order to support the same operation:
 - 6LR starts by using the IPSP Node role only
 - A previously existing IPSP Router establishes a BLE connection with the 6LR, which receives an RA from that router
 - The 6LR configures its interface address, it turns into a router, and runs as an IPSP Router
 - 6LBR runs as an IPSP Router from the beginning

Updates in -03 (III/VIII)

- Appendix: example
 - Step 1

```
6LBR (IPSP: Router)
```

```
6LR 6LR (not initialized)
```

```
6LN 6LN 6LN (not initialized) (not initialized)
```

Updates in -03 (IV/VIII)

- Appendix: example
 - Step 2

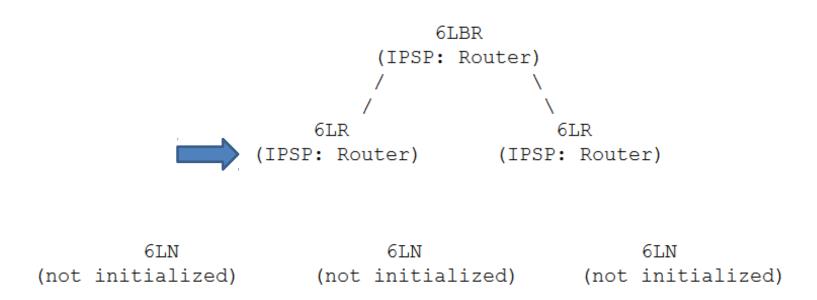
```
6LBR
(IPSP: Router)

6LR 6LR
(IPSP: Node) (IPSP: Node)

6LN 6LN 6LN
(not initialized) (not initialized)
```

Updates in -03 (V/VIII)

- Appendix: example
 - Step 3


```
6LBR
(IPSP: Router)

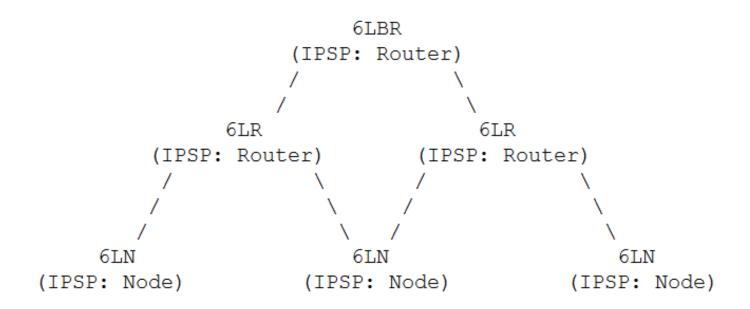
Bluetooth LE connection --> / \
6LR 6LR
(IPSP: Node) (IPSP: Node)

6LN 6LN 6LN
(not initialized) (not initialized)
```

Updates in -03 (VI/VIII)

- Appendix: example
 - Step 4

Updates in -03 (VII/VIII)


- Appendix: example
 - Step 5

```
6LBR
(IPSP: Router)
/
/
6LR 6LR
(IPSP: Router) (IPSP: Router)

6LN 6LN 6LN
(IPSP: Node) (IPSP: Node)
```

Updates in -03 (VIII/VIII)

- Appendix: example
 - Step 6

Related work: Bluetooth SIG

- "Bluetooth Mesh" specification
 - Published in July 2017
 - BLE Mesh networking
 - (Controlled) Flooding over advertising channels
 - Note: RFC 7668 assumes link-layer connections over data channels for IPv6 over BLE