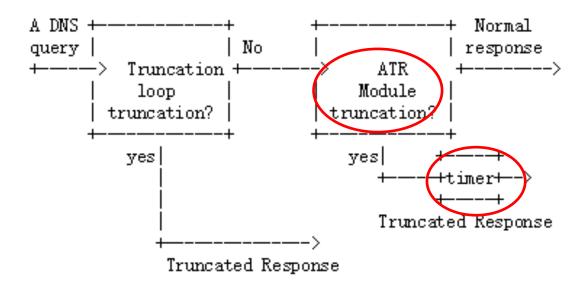
ATR: Additional Truncation Response for Large DNS Response

draft-song-atr-large-resp-01

Davey Song (speaker)/BII lab, 2018-07-17 @IETF 102 Montreal

Document history


- draft-song-atr-large-resp-00
 - An simple improvement on authoritative server by replying additional truncated response just after the normal large response
 - Experimental document
- draft-song-atr-large-resp-01
 - An ATR indicator is introduced with a AT bit in EDNSO
 OPT header
 - More operational considerations on ATR timer, ATR payload size and Less-aggresiveness of ATR
 - Standards Track document

Background

- Two orthogonal ways handling large DNS response
 - Fallback to TCP via TrunCation bit
 - Use EDNS(0) generate larger response avoid TCP fallback
- More public evidence and concerns on packets drop caused by IPv6 fragmentation in DNS
 - RFC7872 reports more than 30% drop rates for sending fragmented packets
 - An APNIC measurement report says more than 37% of endpoints using IPv6-capable DNS resolver can not receive a fragmented IPv6 response over UDP

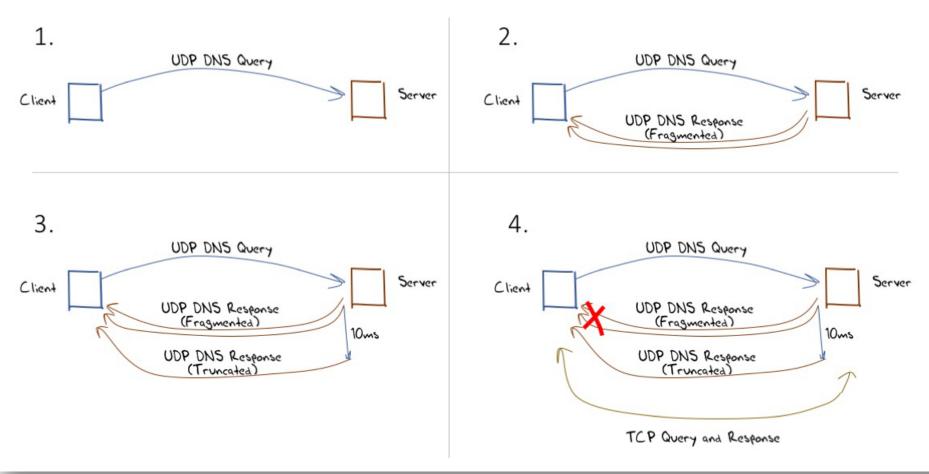
ATR in one slides

- Decouple TCP fallback and EDNS(0) and make them paralleled
- ATR adds an additional response packets to "trail" a fragmented UDP response

The Intention of ATR

Today:

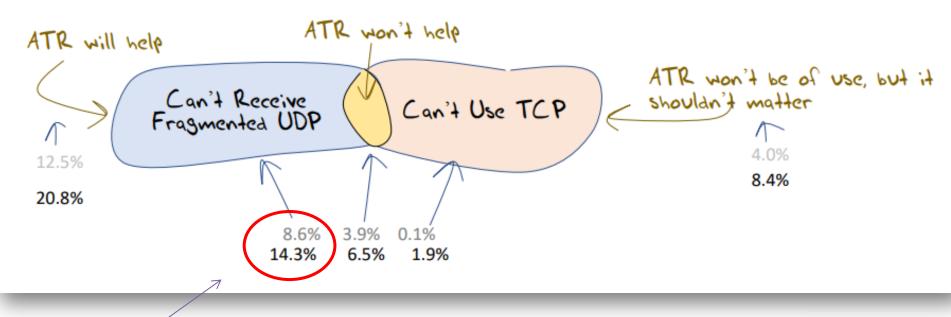
- If the client cannot receive large truncated responses then it will need to timeout from the original query,
- Then re-query using more resolvers,
- Timeout on these queries
- Then re-query using a 512 octet EDNS(0) UDP buffersize
- Then get a truncated response
- Then re-query using TCP


The Intention of ATR

ATR 1883

- If the client cannot receive large truncated responses then it will need to timeout from the original query,
- Then re-query using more resolvers,
- Timeout on these queries
- Then requery using a 512 octet EDNS(0) UDP buffersize
- Then get a truncated response within a few ms
- Then requery using TCP

The Operation of ATR

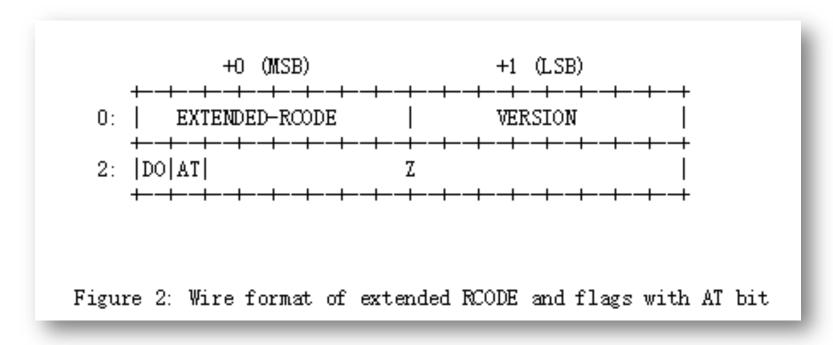


"How well does ATR actually work?" Geoff Huston, Apr 2018
Source: https://blog.apnic.net/2018/04/16/how-well-does-atr-actually-work/

The benefit of ATR

ATR and Resolver Behaviour – IPv4 IPv6

ATR benefits 68.6 IPv4 and 68.7 % IPv6 affected users


Source: http://iepg.org/2018-03-18-ietf101/geoff.pdf

Intention of ATR indicator

- Intention to distinguish these ATR responses in a specific way from an ordinary truncated response
- Enable people to log cases where these ATR responses were received without having already received a (reassembled) UDP response to the query
- Indications to flag problematic name servers where people should restrict maximum EDNS to a lower value than the default 4096 that currently use

AT flag bit in EDNS0 OPT Header

- •Setting the AT bit to one in a response indicates to the resolver that the response is an ATR response.
- •The AT bit cleared(set to zero) indicates the response is a ordinary response.

Operational Considerations

- ATR timer
 - To avoid the impact of network reordering(RO)
 - Less than 50 ms for large site DNS
- ATR payload size
 - 1472 octets for IPv4, 1232 octets for IPv6
- Less aggressiveness of ATR
 - ATR may respond TC=1 responses at a low possibility, such as 10%.
 - Reply ATR response selectively (identify cases ATR ignored)
- Implement a separate daemon of ATR without modify authoritative server

Next step

- Do you like ATR?
- Do you like ATR indicator, AT bit?
- Adoption in DNSOP?
- Standards track or experimental?

