BBR Congestion Control Work at Google

IETF 102 Update

Neal Cardwell, Yuchung Cheng,

C. Stephen Gunn, Soheil Hassas Yeganeh
lan Swett, Jana lyengar*, Victor Vasiliev
Priyaranjan Jha, Yousuk Seung, Kevin Yang, Matt Mathis

Van Jacobson

https://qroups.qoogle.com/d/forum/bbr-dev

IETF 102: Montreal, Jul 2018 Google *Fastly 1

https://groups.google.com/d/forum/bbr-dev

Outline

- Overview and status of BBR congestion control
- BBR V2 research update

- Research goals and focus areas

- Design rationale

- lllustrative lab results from BBR v2 research pre-release code
- Conclusion and ongoing work on BBR

BBR vi1: overview and status

BBR milestones already mentioned at the IETF:

BBR is used for TCP and QUIC on Google.com, YouTube
All Google/YouTube servers and datacenter WAN backbone connections use BBR
- Better performance than CUBIC for web, video, RPC traffic
Code is available as open source in Linux TCP (dual GPLv2/BSD), QUIC (BSD)
Active work under way for BBR in FreeBSD TCP @ NetFlix
BBR Internet Drafts are out and ready for review/comments:
- Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control: draft-cardwell-iccrg-bbr-congestion-control
IETF presentations: IETF 97 | IETF 98 | IETF 99 | IETF 100 | IETF 101
Overview in Feb 2017 CACM

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

BBR v2: current research focus

Improving coexistence/fairness with loss-based CC

- Adapting BBR bandwidth-probing time scale to coexist with Reno/CUBIC
Reducing queue pressure (packet loss, queueing delay)

- Using loss and ECN signals for:

- New model for safe range for in-flight data
- New estimators for exiting STARTUP faster

Speeding up min_rtt convergence

- Making PROBE_RTT more frequent
Reducing throughput variance

- Making PROBE_RTT less drastic

BBR v2 design principles in a nutshell

- Leave headroom: leave space for entering flows to grab

- React quickly: using loss/ECN, adapt to delivery process now to maintain flow balance
- Don't overreact: don't do a multiplicative decrease on every round trip with loss/ECN

- Probe deferentially: probe on a time scale to allow coexistence with Reno/CUBIC

- Probe robustly: try to probe beyond estimated max bw, max volume before we cut est.

- Avoid overshooting: start probing at an inflight measured to be tolerable

- Grow scalably: start probing at 1 extra packet; grow exponentially to use free capacity

(bold = new in v2)

Key in v2: new model for safe range for in-flight

All of these new design principles need an explicit, independent, tight bound on in-flight data
BBR v2 model:

- Mostly cruise at an operating point that maintains flow balance and leaves headroom
- inflight_lo: conservative in-flight bound based on recent loss/ECN signals
- Periodically probe beyond flow balance to probe robustly for higher volume, bandwidth
- inflight_hi: max volume flow had in flight before signals of congestion (loss, ECN)
- If probing higher inflight doesn't trigger loss/ECN signals , grow probing rapidly
- inflight_probe: incremental probe data beyond inflight_hi (during probing)

.. inflight_hi

.. inflight_lo :

BBR v2 flow life cycle

inflight

At a high level, BBR v2 has the same state machine states as v1
But many of the mechanism details are new

(bold = new in v2)

time

Google

BBR v2 flow life cycle

STARTUP

STARTUP

- Doubles sending rate and inflight

- Sets inflight_hi to estimated max safe in-flight volume if:
- Filtered loss rate is too high
- Filtered ECN rate signal is too high

- Exits when either:
- Bandwidth samples plateau
- inflight_hi is set

inflight

time

Google

BBR v2 flow life cycle

g inflight_hi

DRAIN
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP ("drain to target")

inflight

time

Google

BBR v2 flow life cycle

PROBE_BW: CRUISE
..... /|nf||ght_h|

.. inflight_lo

PROBE_BW "CRUISE" phase:
- Cruising operating point respecting several constraints
- Start inflight at estimated BDP
- inflight <= estimated_bdp
- Leave headroom if last probe saw a hard ceiling at inflight_hi:
- inflight <= (1 - headroom) * inflight_hi (headroom=0.15)
- Adapt inflight below inflight_lo using loss, ECN signals
- inflight <= inflight_lo
time - On loss, respect packet conservation, maintain flow balance
- inflight_lo -= packets_lost
- Onfiltered ECN signals, cut inflight using EWMA mark rate a
Google - inflight_lo -= k * (a - hysteresis) * packets_delivered 10

inflight

BBR v2 flow life cycle

PROBE_BW: UP inflight_hi

_________________________ o

PROBE_BW "UP" phase:
- Probe for bandwidth and volumetric capacity
- Grow beyond inflight_hi slowly at first, then rapidly
- inflight_target = inflight_hi + inflight_probe
- inflight_probe grows exponentially per round trip:
- 1,2,4,8... packets
- Set inflight_hi ceiling to estimated max safe in-flight volume if:
- Loss rate is too high: loss_rate > loss_ceiling (1%)
time - Filtered ECN rate signal is too high
- Terminate probing upon any of:
- Estimated queue is too high (inflight > 1.25 * estimated_bdp)
- Hit inflight_hi loss or ECN ceiling 11

inflight_hi

inflight

Google

BBR v2 flow life cycle

........................ inflight_hi

|nf||ght_h| \

PROBE_BW: DOWN

PROBE_BW "DOWN" phase:
- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= estimated BDP ("drain to target")

(PROBE_BW "DOWN" phase may replace DRAIN phase in next rev)

inflight

time

12

Google

BBR v2 life cycle example: shallow buffer

- Example: 6 BBR, 100M, 100ms, buffer = 5% of BDP (41 packets); t={0, 2, 4, 6, 8, 10} sec

Individual Rate

100M
bw retrans

BBR 1 236 M 2.0%

50M
BBR 2 16.9 M 0.9%
0 BBR 3 15.3 M 0.8%

Cumulative Rate
| | | | BBR 4 12.3 M 0.9%
AN\~

‘ 7 A A] BBR 5 14.2 M 0.8%

| | BV NP o | BBR 6 143 M 0.7%

20 30 40 50 60
Time {sec)

13

Coexistence with loss-based congestion control

- Goal: ensure Reno, CUBIC can continue to work well in contexts where they do today:
- Intra-datacenter/LAN traffic: support 100M through 40G Ethernet
- Internet last mile traffic: support up to 25Mbps (4K Video) at RTT of 40ms

- Challenge: Reno/CUBIC need long periods of no loss to utilize high BDPs

14

Coexistence: design

- Strategy:
- 1: Estimate the bandwidth available to our flow
- 2: Adapt (within bounds) the frequency at which a BBR flow probes and knowingly
risks packet loss to allow Reno (and thus CUBIC) to reach our bandwidth
- Dual time scales, including bounded Reno pseudo-emulation (like CUBIC)
- T_bbr: BBR-native time-scale: 2-5 secs, as an increasing log-like function of bw
- T_reno: Reno-coexistence time scale: min(BDP in packets, 50) * RTT
- Time between bandwidth probe phases (PROBE_BW "UP" phases):
- T_probe = min(T_bbr, T_reno)
- Bandwidth estimator filter window now simply covers last 2 PROBE_BW cycles

15

Coexistence with loss-based congestion control

- Example: 1 Reno, 1 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2} secs

Individual Rate

—reno 10.211.147.144:47472
- — bbr 10.211.147.144:47473 bw retrans
30M
sk Reno 249 M 0.19%
) ' ' ' ' ' ' BBR 231 M 0.09%

% 20 40 60 80 100 120
Cumulative Rate
— reno 10.211.147.144:47472 |
\V V v ~ — bbr10.211/147.144:47473 \

40M \

fﬁ/\m Improved fairness:
V\VA Py /\\"A'/\V/\VA" /\A/\/\ o AA A AL A,

VTV
BBR v1: 92% of bw

20M

0 20 40 60 80 100 120

Time (sec) BBR V2: 48% Of bW 16

Coexistence with loss-based congestion control

- Example: 2 CUBIC, 2 BBR, 50M, 40ms, buffer = 1xBDP; start time {0, 2, 4, 6} secs

Individual Rate
— cubic 10.211.147.144:51364 bw retrans
i — cubic 10.211.147.144:51365 | '
szt CUBICY | 148M 040%
20M CuUBIC 2 124 M 0.12%
i BBR 1 10.8 M 0.16%
Cumulative Rate BBR 2 1 09 M 021 %
— cubic 10.211.147.144:51364 ‘
oy M — cubic 10.211.147.144:51365
40M —Bbr IV 2L 147 13451366
W bbr I0. 2111471 1366 .
| WWMM\/\ Improved fairness:

20M 1 [I R : [
WMWWW BBR v1: 94% of bw

g 2 40 et & = 120 BBR v2: 44% of bw 17

Exiting STARTUP faster: motivation

- BBR STARTUP
- Doubles sending rate each round trip (analogous to slow-start)
- Sending rate is up to 2x the delivery rate
- Inflight is up to 2x to 2.89x the BDP
- Staying in startup after the pipe and buffer are both full can cause sustained high loss
- And thereby drive loss-based CC down to low rates
- Thus exiting STARTUP quickly is important
- Forreducing loss
- For fairness

18

Exiting STARTUP faster: using Loss, ECN signals

- BBRv1 STARTUP exit
- After 3 round trips where bw didn't increase by 25%, exit STARTUP, enter DRAIN
- V2 prototype: Loss-based STARTUP exit
- After entering fast recovery in STARTUP
- Enter packet conservation (match current delivery bw, avoid further losses)

- At end of each round trip in recovery:
If loss_rate > loss_ceiling (1%) and num_loss_gaps > K (8) then
Enter DRAIN and drain in-flight to estimated BDP
Else
Exit packet conservation and continue
- V2 prototype: ECN-based STARTUP exit

- At end of each round trip that saw ECE-marked packets:
If ecn_mark_rate > target_ecn_mark_rate (50%) then
Enter DRAIN and drain in-flight to estimated BDP

19

5000000

4000000

3000000

2000000

1000000

Example loss-based STARTUP exit:

First flow exits after first round of sustained losses (100Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec

sk

500,000 ms

sequence

1500000

10000004

5000004

offset

1 Example loss-based STARTUP exit:

“ Third flow exits after first round of clear, sustained losses (30Mbps)

100M link, 100ms RTT, buffer is 5% of BDP (41 packets)
3 flows starting at t={0, 2, 4} sec

Gy o %
N Goipase "
JOPON Poetis o

o Goeo®? B e e
ped®® 0 T

200,000 ms 400,000 ms 600,000 ms 800,000 ms

Improving PROBE_RTT

The problems:

- Slow min_rtt convergence because ProbeRTT is rare
- Slow convergence (20-30 secs), because PROBE_RTT is rare (every 10 secs)
- Risk of high tail latency because ProbeRTT is drastic
- Could cause high tail latency because PROBE_RTT cuts inflight low (4 packets)

Proposed approach for improving PROBE_RTT:

- Make it less drastic: e.g. inflight ~= 0.75x estimated_bdp
- Why 0.75x? 0.75* 1.25 = 0.9375 (so our inflight should be less than real BDP)
- Make it more frequent: e.g. every 2.5 secs
- Why 2.5s? (0.2*0.75 + 2.5%1.0) / (0.2+2.5) = 98.1% (so our utilization should still meet our target)

22

PROBE_RTT example: BBR vs BBR

Before (BBR v1): After (BBR v2):

Rates for 2 BBR flows Rates for 2 BBR flows

uuuuuuu Cumulative Rate

10M ; | — bbr 10.35.58.194:7798

—rtt —rtt
— mrtt — mrtt
100 100
S0 | [T T T T 50 |l
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (sec) Time (sec)

T10M, 40ms, buffer = 10xBDP 23

PROBE_RTT example: BBR vs CUBIC

Before (BBRV1): After (BBR v2):
Rates for 1 Cubic and 1 BBR Rates for 1 Cubic and 1 BBR

— bbr 10.177.198.7:18589 \/’\ — bbr 10,177.198.7:33;
o ik 05 O LA A /\v/\‘\/v/\v/\/\v

e

RTT

400
400

300
200

200

0 .
0 10 20 30 40 50 60 Time (sec)

T10M, 40ms, buffer = 10xBDP 24

Conclusion

- Status of BBR v1
- Deployed widely at Google
- Open source for Linux TCP and QUIC
- Documented in IETF Internet Drafts
- Actively working on BBR v2
- Linux TCP and QUIC at Google; current focus areas:
- Packet loss and ECN signals
- Coexistence with loss-based congestion control
- Work under way for BBR in FreeBSD TCP @ NetFlix
- Always happy to see patches, hear test results, or look at packet traces...

25

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, Pawel Jurczyk, Biren Roy,
David Wetherall, Amin Vahdat, Leonidas Kontothanassis, and
{YouTube, google.com, SRE, BWE} teams.

26

https://groups.google.com/d/forum/bbr-dev

Backup slides...

27

Reducing queue pressure

- To reduce queue pressure (and delay, loss) need an explicit, tight bound on in-flight
data
- Building a robust model for a bound on in-flight data is challenging
- Challenges with signals:
- ECN: Few paths outside datacenters provide ECN
- Delay: Common to have no usable delay signal (policers, shallow WAN buffers)
- Loss: Not all packet loss means a bottleneck is full on a sustained basis

—

@ Receiver

D=

28

Leaving headroom

- With shallow buffer (or zero buffer, like policers) CCs should aim to keep some
fraction of slots free (in pipe and/or buffer)
- Operating point for in-flight data while cruising should leave some headroom
- Why leave headroom?
- Toreduce queue: lower loss, delay
- To allow room for dynamic/intermittent cross traffic without excessive loss or delay
- To not starve loss-based CC (Reno/CUBIC)
- For faster, more scalable convergence toward a fair share
- Headroom accelerates fairness convergence dynamics
Small flows can slow down big flows by claiming those free slots at a higher rate than big flows

Google 29

Headroom and convergence toward fair share

small blue flow big green flow
A probes and sees blue makes probes and sees green makes
, , more bw multiplicative less bw multiplicative
starting point (light blue) as decrease (light green) as decrease
available to it of inflight available to it of inflight

inflight

alhe
free slots =P — one
"""" B W . A (multiplicative)

step more fair

data in flight

time
e

2 flows; same RTT; capacity = aggregate inflight beyond which all packets are dropped; used/free slots may be in queue or link
30

Google NOTE: Whichever flow probes first can claim the free slots and increase its share (as with Reno/CUBIC convergence)

The bottleneck-probing dilemma

- The dilemma:
- Sometimes a flow should respect flow balance:
- If a path *is* full, traffic needs to adapt to restore flow balance
- Sometimes a flow should exceed flow balance:
- Any single loss or ECN mark is ambiguous
- So to tell if a bottleneck is full, traffic needs to eventually send faster to probe
- But if bottleneck *is* full and buffer is shallow, bandwidth probing causes loss
- Causes low throughput for loss-based CC
- Causes High tail latency due to loss recovery for any CC
- It's tricky to thread the needle...

31

BBR v2: probing growth rationale

- Are there more free slots (pipe and/or buffer) available? 2 main cases:
- No: There are not more free slots: here we need to grow gently at first
- We are filling buffer slots and causing higher delay and loss
- Need to grow slowly at first to control blast radius
- We don't want full multiplicative/exponential growth of inflight
- Yes: There are more free slots: here we need to grow scalably (asymptotically very superlinear)
- If more bw becomes available (e.g. other flows leave) need to grow 1000x rapidly
- e.g. grow from 10Mbps to 10Gbps in a "usable" time scale
- Growth should be fast enough to avoid forcing users to open more connections
- Is a cubic curve as scalable as we'd like? Probably not:
- Cubic: need wait_time *= 10 to get bw *= 1000
- ldeally we want some exponential component:
- Exponential w/ k=2: wait_time += 10 to get bw *= 1024

- Implication: inflight_probe starts small, grows exponentially

Google 32

