
BBR Congestion Control:

IETF 102 Update: BBR Startup

Ian Swett

https://groups.google.com/d/forum/bbr-dev

QUIC implementation

1IETF 102: Montreal, July 19, 2018

https://groups.google.com/d/forum/bbr-dev
https://cs.chromium.org/chromium/src/net/third_party/quic/core/congestion_control/bbr_sender.h

Web flows

● A large portion of flows never exit STARTUP
● Flows on policed connections experience huge losses in STARTUP(up to 50%)
● Sometimes ack aggregation limits the rate of STARTUP growth or causes

early exit

Quartc

● Realtime applications are very sensitive to large changes in bandwidth and
bufferbloat

● The small pacing rate and long time spent in DRAIN was consistently
problematic

2

Issues and Motivation

Problem: BBR already reacts to loss in STARTUP by entering packet conservation,
but that doesn’t decrease the time in STARTUP much, sometimes it increases it.

Proposal: Use a 1.5x pacing gain during STARTUP after both a loss has been
detected AND a non app-limited sample has been taken

Reasoning: 1.5x should be enough to stay in STARTUP until max BW is reached

3

Idea: Make BBR Startup more sensitive to loss

Problem: BBR already reacts to loss in STARTUP by entering packet conservation,
but that doesn’t decrease the time in STARTUP much, sometimes it increases it.

Proposal: Use a 1.5x pacing gain during STARTUP after both a loss has been
detected AND a non app-limited sample has been taken

Reasoning: 1.5x should be enough to stay in STARTUP until max BW is reached

Result: Slight latency degradation in fraction of flows. Retransmit rates decrease
>5% for video playbacks. Traces look a lot nicer.

Next Step: Increase gain back to 2.89 if the losses were spurious

4

Idea: Make BBR Startup more sensitive to loss

BBR is designed to be bandwidth based, BUT exiting STARTUP always requires BBR to
become CWND limited because bandwidth hasn’t increased more than 25% for 3 RTTs

Problem: Consistently sending at 2.89x the max bandwidth builds a 1.89x queue

Proposal: Derive the minimum CWND gain necessary to achieve a doubling in bandwidth
every RTT.

=> Unsurprisingly it’s 2 (assuming continuous delivery)

=> >40% less queue buildup exiting STARTUP (if it works…)

Next Step: Run tests

Recent Pacing Gain Derivation
5

Idea: CWND gain of 2 in Startup

https://groups.google.com/d/msg/bbr-dev/TlQG1UgEyyY/6FKB7Ah3AgAJ

Problems:

 The 2x cwnd_gain derivation assumes continuous delivery, which isn’t enough

=> CWND needs to be increased by at least 2 MSS to deal with delayed ACKs

 If ACKs are aggregated, growth may be slow early even with 2.89 CWND gain

Goals:

Ensure there is sufficient CWND to double every RTT, regardless of aggregation.

Minimize the CWND when entering DRAIN

6

Proposal: Ack Aggregation in Startup

Proposal: Add the most recent excess acked to CWND. As you approach Max BW, this
decreases because bandwidth stops increasing.

In STARTUP, newly discovered bandwidth may initially be interpreted as excess acked.

Not using a multi-RTT max filter for excess acked avoids using an old excess acked when
the new measured bandwidth is much higher.

Results: Simulations show less time in STARTUP and lower SRTT when combined with a
CWND gain of 2.

Next Steps: Experimental data coming soon.

Excess Acked Intro: slides-101-iccrg-an-update-on-bbr-work-at-google-00
7

Proposal: Ack Aggregation in Startup (cont’d)

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00

Currently DRAIN pacing_gain is 0.34 (1 / 2.89)

Goal: Quickly drain excess 1-2x BDP of inflight after STARTUP

Problem: WebRTC has difficulty adapting to >2x bandwidth reductions

Proposal: Increase DRAIN pacing_gain to 0.75

If the CWND gain is reduced to 2, then the total time in DRAIN should be similar
to today

Allows BBR to remove DRAIN mode and instead enter low-gain PROBE_BW
when combined with drain_to_target.

8

Proposal: Increase DRAIN pacing gain to 0.75

DRAIN

Conclusion

In real-world flows, flow startup is a huge problem, and flows spend a lot of time in
slow-start(Reno/Cubic) and STARTUP(BBR)

Real-time applications are particularly sensitive to STARTUP behavior and exit

It may be possible to improve BBR’s STARTUP in ways that decrease retransmit rates and
decrease bandwidth fluctuations without degrading application metrics

Experimental QUIC “Connection Options”(aka COPT):

● BBRS - Reduce pacing to 1.5x pacing_gain after loss
● BBQ2 - Reduce cwnd_gain to 2x during STARTUP
● BBQ3 - Enable ack aggregation compensation in STARTUP
● BBQ4 - Increase pacing_gain to 0.75x in DRAIN

9

 Q & A

QUIC implementation

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Neal Cardwell, Yuchung Cheng, Soheil Yeganeh, Van Jacobson,
and Victor Vasiliev for their ideas and feedback.

10

https://cs.chromium.org/chromium/src/net/third_party/quic/core/congestion_control/bbr_sender.h
https://groups.google.com/d/forum/bbr-dev

