MPLS Extension Header for In-network Services

draft-song-mpls-extension-header-00

Haoyu Song Zhenbin Li Tianran Zhou Stewart Bryant Andrew Malis

MPLS Architecture Principles @ IETF90

"No idea is so bad that it won't be proposed over and over again" George Swallow

From IPv4 to IPv6

- Extend the address space
 - Not so successful due to NAT
- Extension headers!
 - Offer huge innovation possibilities
 - Security
 - Segment routing
 - In network services (SFC, In-situ OAM)
 - Network programming!
- However, there are still issues unsolved
 - IPv6 header overhead (40-byte base header)
 - Can't quickly skip the extension headers to access the upper layer protocols

Can we do the same thing on MPLS?

- MPLS is imperfect
 - No indicator for the upper layer protocols
 - Difficult to encapsulate new headers and metadata
- Many not so successful attempts to fix MPLS
 - The room is tiny
 - Backward compatibility!
- "Case by case" patching is not good
 - Difficult to combine multiple special cases
 - Difficult to extend
 - Difficult to standardize
 - Difficult to support future needs
- Designing a general mechanism to solve a lot of problem and create a lot of innovation opportunities is plausible
 - Learn experience from the other protocols!

Time is coming!

- In-network services need to be supported by MPLS
 - INT/IOAM
 - Network Programming
 - DDOS prevention
- Multiple services may need to stacked together
- Need to be backward compatible if needed
- Performance considerations
 - Avoid unnecessary label stack scanning
 - Allow quick access to the inner packet

Ways to achieve that

- A Special "Extension Header Label"
 - Use case is significant enough to deserve one
 - 8 unallocated so far (4-6 and 8-12)
- Two-label scheme: XL(15) + EHL
 - Still okay, but need one more label
 - No need to go this way, otherwise it's tempting to play with the EHL encoding
- Dual FEC labels to indicate the existence of EH
 - Avoid the trouble to introduce a new special label
 - Complicate the control plane
- We prefer the option #1

Packet Format

Some Details

- Extension Header Label (EHL) can be in any location in the label stack
 - For backward compatibility, it needs to be at BOS
 - For upgraded networks, it can be at any location in the stack
 - Preferred to be close at the top for performance reasons
- Next Header values
 - The Next Header field in the last extension header can have two special values:
 - "NONE" no any header and payload after this header
 - "UNKNOWN" the header or payload type after this header is unknown
 - To be compatible with the original MPLS design
- How about load balancing?
 - Use ELI+EL and put the label pair anywhere in the label stack
 - Can quickly skip the extension headers and use the upper layer protocol for LB

Conclusions

- MPLS is widely deployed
- MPLS has low overhead
- But it is difficult for MPLS to support in-network services
- A flexible and extensible solution MPLS extension header
 - We believe the use cases are strong enough to deserve a special label for MPLS extension headers
 - We are developing new applications and use cases which can take advantage of the MPLS extension headers
- Feedback is welcome!