
The	“Client/Server”	Set	of	Drafts

NETCONF	WG
IETF	102	(Montreal)

draft-ietf-netconf-crypto-types-00	
draft-ietf-netconf-trust-anchors-00
draft-ietf-netconf-keystore-05
draft-ietf-netconf-ssh-client-server-06
draft-ietf-netconf-tls-client-server-06
draft-ietf-netconf-netconf-client-server-06
draft-ietf-netconf-restconf-client-server-06

Since	IETF	101

• adopted	the	“crypto-types”	and	“trust-anchors”	drafts
• did	not	unadopt the	“keystore”	draft
• all	drafts	updated	and	submitted	as	a	set
• open	issues	linger…

2

Relationship	between	Drafts

3

crypto-types
^ ^

/ \
/ \

trust-anchors keystore
^ ^------+ ^ ^
| \ | |
| +-----------+ |
| / \ |

ssh-client-server tls-client-server
^ ^ ^
| | |
| +---------+ |
| / |

netconf-client-server restconf-client-server

Keep	trust-anchors	separate	from	keystore?

History:
– Originally,	ietf-keystore had	both	keys	and	trust-anchors	together.
– ietf-trust-anchors	was	created	in	an	attempt	to	get	rid	keystore
– But	we	wound	up	keeping	keystore,	and	trust-anchors	remain	separate.

Tradeoffs:
– Keeping	separate	provides	more	applicable	names	(keystore just	stores	

keys)	and	provides	some	modularity	(drafts	can	update	independently).
– Bringing	together	would	be	one	less	module	do	deal	with…

Options:
1. Keep	modules	separate	(current	drafts)
2. Bring	together	again	(like	the	old	keystore draft)

4

Keep	"local-or-keystore"	keys?

The	“local-or	keystore”	construct	came	from	wanting	application-
specific	keys	(keys	that	are	not	shared	for	any	other	purpose).

This	choice	statement	accurately	configures	single-use	keys,	but	it	
makes	for	rather	busy	models.

An	alternative	could	be	to	instead	have	all	keys	in	keystore,	and	
let	the	application/operator	deal	with	ensuring	that	some	keys	are	
not	referenced	more	than	once.

Options:
1. Keep	“local-or-keystore”								(keystore MAY	be	implemented)
2. Eliminate	the	“local”	option		(keystore MUST	be	implemented)

5

Assuming	“local-and-keystore”,	how	to	
disable	support	for	the	”local”	choice?

Options:

1. add	"if-defined	'not	keystore-implemented’"	to	the	"local"	
choice. (a	*global*	on/off	switch,	not	per	use	of	the	grouping)

2. add	"if-defined	'local-keys-supported’"	to	the	"local"	
choice. (a	*global*	on/off	switch,	not	per	use	of	the	grouping)

3. do	nothing	to	the	grouping	definition,	let	downstream	
modules	augment-in	their	own	if-feature	statements. (a	per-
use	switch,	but	what	would	the	ssh/tls-client-server	drafts	do	when	using	
the	grouping?!)

4. Don’t	attempt	to	disable	the	“local”	choice.		(effectively	same	a	
option	3)

6

Should	some	of	Keystore's groupings	be	
moved	to	crypto-types?

7

The	following	groupings	are	not	Keystore-specific:
– public-key-grouping
– asymmetric-key-pair-grouping
– asymmetric-key-pair-with-certs-grouping	*
– end-entity-cert-grouping	*
– trust-anchor-cert-grouping	*?

The	following	groupings	are Keystore-specific:
– local-or-keystore-asymmetric-key-grouping
– local-or-keystore-asymmetric-key-with-certs-grouping	*
– local-or-keystore-end-entity-certificate-grouping	*

✵ Note	that	the	groupings	with	an	asterisk	define	a	notification	(“certificate-expiration”)

Options:
1. move	non-Keystore-specific	groupings	to	crypto-types
2. keep	non-Keystore-specific	groupings	in	Keystore module

Should	algorithm	identities	be	moved	from	
ietf-[ssh/tls]-common	to	crypto-types?

8

Uses	for	identities:
1. to	define	the	algorithm	used	by	a	key	definition,	whether	configured	

locally	or	in	the	Keystore.
2. to	constrain	the	allowed	key	algorithm	types	so	as	to	conform	to	

some	security	policy.
3. to	specify	preference	for	certain	key	types	by	the	order	in	which	the	

types	are	configured,	in	case	"keys	to	use"/"keys	to	check"	are	
unordered	lists

Problems:
– three	sets	of	similar	identities
– no	constraints	that	the	identities	used	during	negotiation	have	to	

match	the	identities	for	keys	that	exist.

No	solution	options	yet	– any	opinions?

Add	a	"periodic"	feature	enabling	the	initiating	
peer	to	optionally	support	periodic	connections?

Currently,	the	NC/RC	client/server	modules	enable	both	persistent	and	
periodic	connections	to	be	configured,	but	maybe	“periodic”	should	be	
optional	to	implement?

Tradeoffs:
– It	seems	that	periodic	connections	are	not	commonly	implemented. A	feature	

would	primarily	be	to	accommodate	that	market	trend.
– Periodic	connections	are	incredibly	useful	and,	by	not	having	a	feature,	we	

might	nudge	the	industry	into	supporting	them	more.

Options:
1. add	“periodic”	feature		(MAY	be	implemented)
2. do	not	add	“periodic”	feature		(MUST	be	implemented)

9

Add	support	for	TCP	Keepalives?
The	NC/RC	client/server	modules currently	support	configuring	SSH/TLS-level	
keepalives.

But	TLS-level	keepalives aren’t	well	supported,	and	so	there	is	a	desire	to	alternately	
configure	TCP-level	keepalives…

A	budding	IETF	statement	says	that,	when	using	a	crypto-transport,	the	aliveness	
checks	SHOULD	NOT	occur	via	the	underlying	cleartext protocol	layer.

Question	1:
1. do	nothing	(only	crypto-level	keepalives can	be	configured)
2. do	something	(also	support	TCP	keep-alives)

Assuming	”2”,	then	how:
a. add	a	flag	indicating	that	the	keepalives should	be	TCP-level
b. add	a	choice	statement	for	the	two	keepalive options	

10

! Thanks	for	the	input!		J

11

