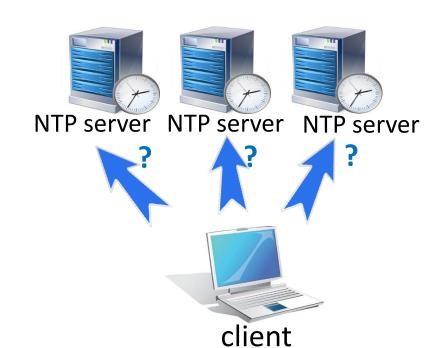


Omer Deutsch, Neta Rozen Schiff, Danny Dolev, Michael Schapira



• NTP's client-server architecture consists of two main steps:

1. Poll process:

The NTP client gathers time samples from NTP servers

Poll process: NTP queries

• NTP's client-server architecture consists of two main steps:

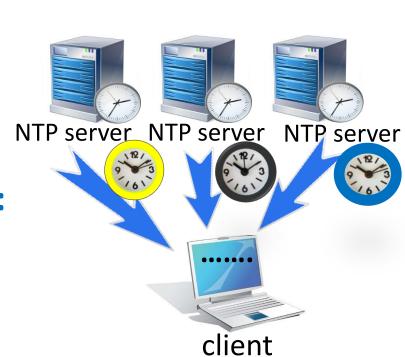
1. Poll process:

The NTP client gathers time samples from NTP servers

Poll process: NTP responses:

• NTP's client-server architecture consists of two main steps:

1. Poll process:


The NTP client gathers time samples from NTP servers

2. <u>Selection process</u>:

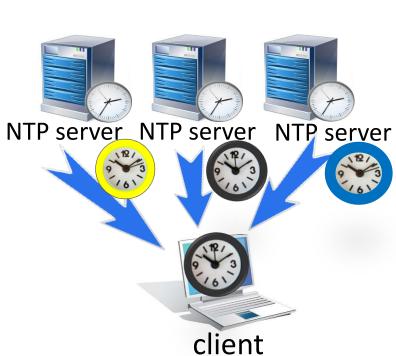
The "best" time samples are selected and are used to update the local clock

Poll process: NTP responses:

Selection process:

• NTP's client-server architecture consists of two main steps:

1. Poll process:

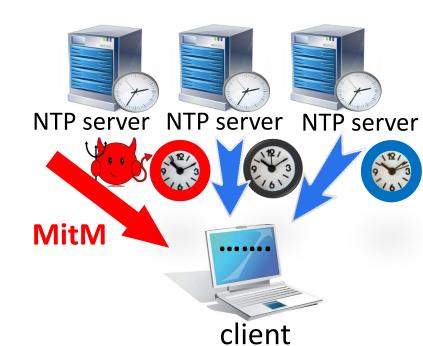

The NTP client gathers time samples from NTP servers

2. <u>Selection process</u>:

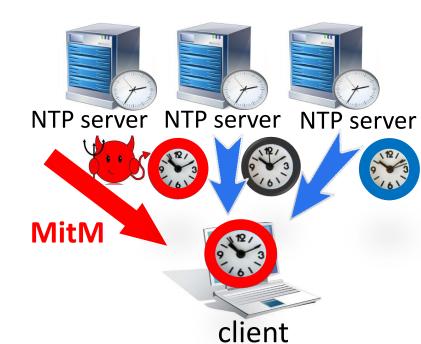
The "best" time samples are selected and are used to update the local clock

Poll process: NTP responses:

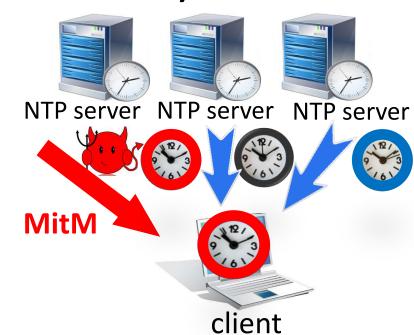
Selection process:



- NTP is highly vulnerable to time shifting attacks, especially by a MitM attacker
 - Can tamper with NTP responses



- NTP is highly vulnerable to time shifting attacks, especially by a MitM attacker
 - Can tamper with NTP responses



- NTP is highly vulnerable to time shifting attacks, especially by a MitM attacker
 - Can tamper with NTP responses

- NTP is highly vulnerable to time shifting attacks, especially by a MitM attacker
 - Can tamper with NTP responses
 - Can impact local time at client simply by dropping and delaying packets to/from servers (encryption and authentication are insufficient)

Previous studies consider MitM as "too strong for NTP"

• <u>NTP's poll process</u> relies on a small set of NTP servers (e.g., from pool.ntp.org), and this set is often DNS-cached (implementation property).

• <u>NTP's poll process</u> relies on a small set of NTP servers (e.g., from pool.ntp.org), and this set is often DNS-cached (implementation property).

Attacker only needs MitM capabilities with respect to few NTP servers

• <u>NTP's poll process</u> relies on a small set of NTP servers (e.g., from pool.ntp.org), and this set is often DNS-cached (implementation property).

Attacker only needs MitM capabilities with respect to few NTP servers

• NTP's selection process assumes that inaccurate sources are rare and fairly well-distributed around the UTC (the correct time)

• <u>NTP's poll process</u> relies on a small set of NTP servers (e.g., from pool.ntp.org), and this set is often DNS-cached (implementation property).

Attacker only needs MitM capabilities with respect to few NTP servers

• NTP's selection process assumes that inaccurate sources are rare and fairly well-distributed around the UTC (the correct time)

Powerful and sophisticated MitM attackers are beyond the scope of <u>traditional</u> threat models

Chronos to the Rescue

The **Chronos NTP client** is designed to achieve the following:

- Provable security in the face of fairly powerful MitM attacks
 - > negligible probability for successful timeshifting attacks
- Backwards-compatibility
 - > no changes to NTP servers
 - > limited software changes to client
- Low computational and communication overhead
 - > query few NTP servers

Threat Model

The attacker:

- Controls a large fraction of the NTP servers in the pool (say, 1/4)
- Capable of both deciding the content of NTP responses <u>and</u>
 timing when responses arrive at the client
- Malicious

Chronos Architecture

Chronos' design combines several ingredients:

Rely on many NTP servers

- > Generate a large server pool (hundreds) per client
 - ➤ E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
- > Sets a very high threshold for a MitM attacker

Chronos Architecture

Chronos' design combines several ingredients:

Rely on many NTP servers

- > Generate a large server pool (hundreds) per client
 - ➤ E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
- > Sets a very high threshold for a MitM attacker

Query few servers

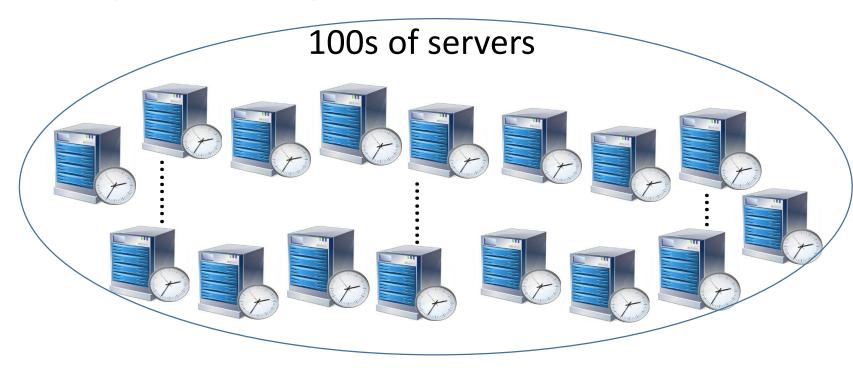
- > Randomly query a small fraction of the servers in the pool (e.g., 10-20)
- ➤ Avoids overloading NTP servers

Chronos Architecture

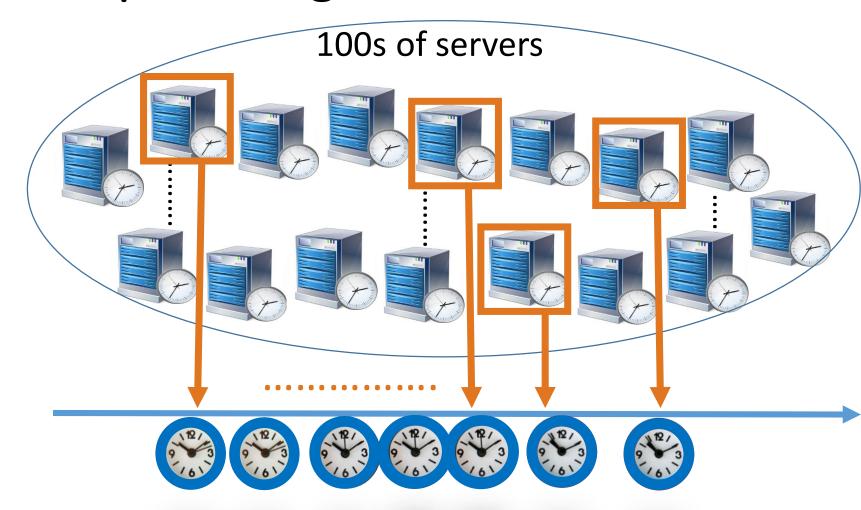
Chronos' design combines several ingredients:

Rely on many NTP servers

- > Generate a large server pool (hundreds) per client
 - ➤ E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
- > Sets a very high threshold for a MitM attacker


Query few servers

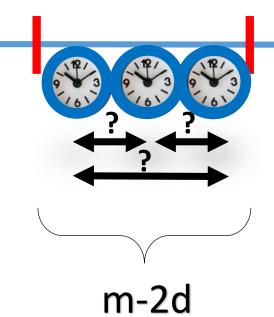
- > Randomly query a small fraction of the servers in the pool (e.g., 10-20)
- ➤ Avoids overloading NTP servers


Smart filtering

- > Remove outliers via a technique used in approximate agreement algorithms
- > Limit the MitM attacker's ability to contaminate the chosen time samples

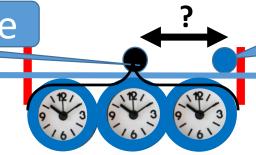
 Query m (10s of) servers at random

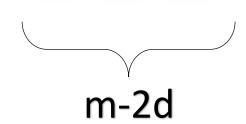
- Query m (10s of) servers at random
- Order time samples from low to high



- Query m (10s of) servers at random
- Order time samples from low to high
- Remove the d lowest and highest time samples

Check:

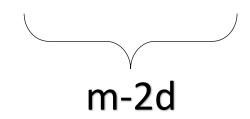

If (the remaining samples are close)


Remaining samples' average

Check:

If (the remaining samples are close)
and (average time close to local time)

Client's clock



Remaining samples' average

Client's clock

Check:

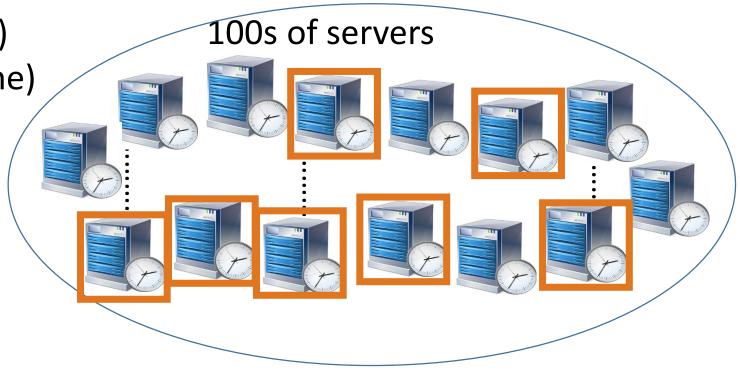
- Then:
 - Use average as the new client time

Remaining samples' average

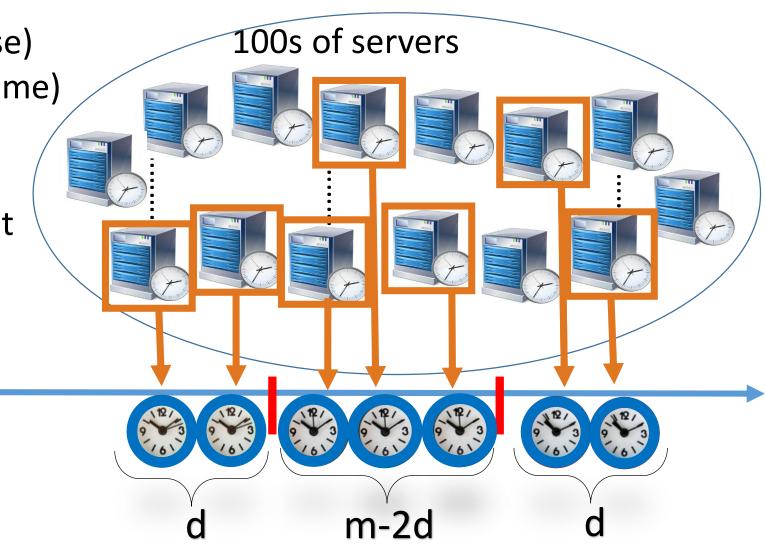
Check:

If (the remaining samples are close)
and (average time close to local time)

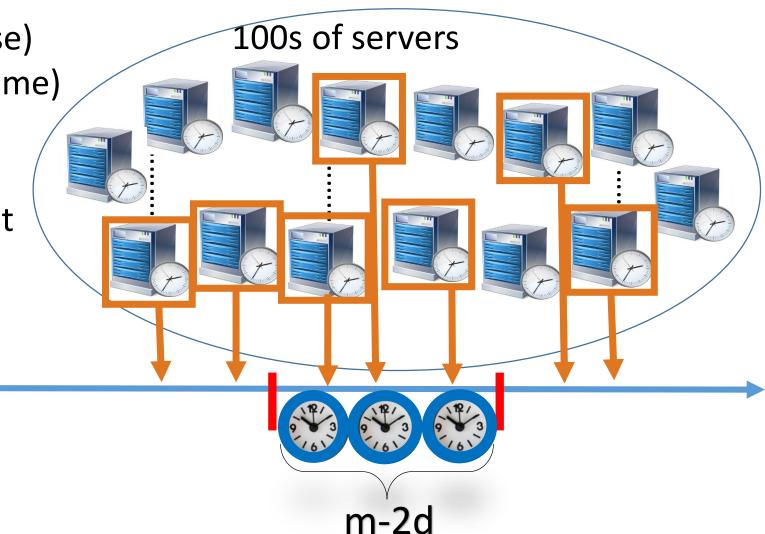
- Then:
 - Use average as the new client time
- Else
 - Resample



Client's clock

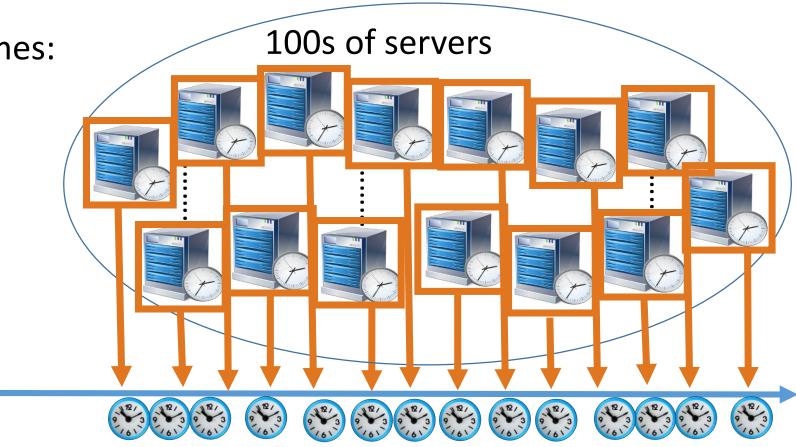

Check:

- Then:
 - Use average as the new client time
- Else
 - Resample

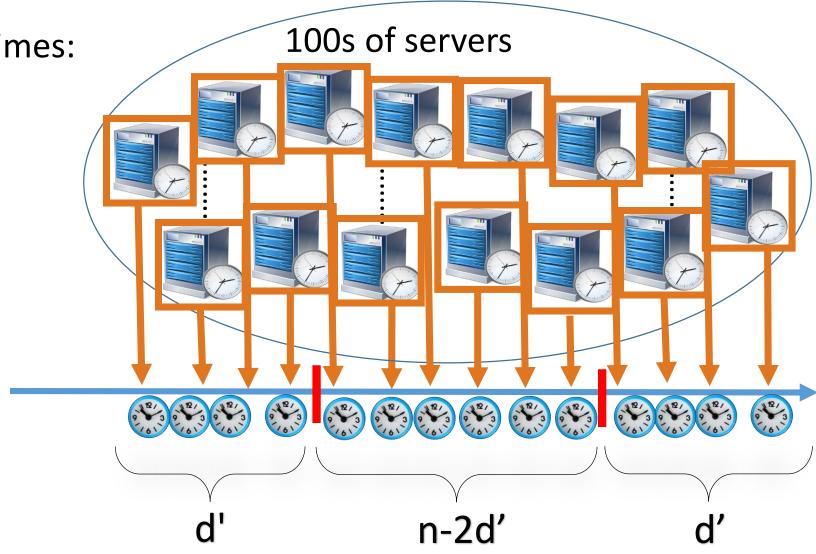

Check:

- Then:
 - Use average as the new client time
- Else
 - Resample

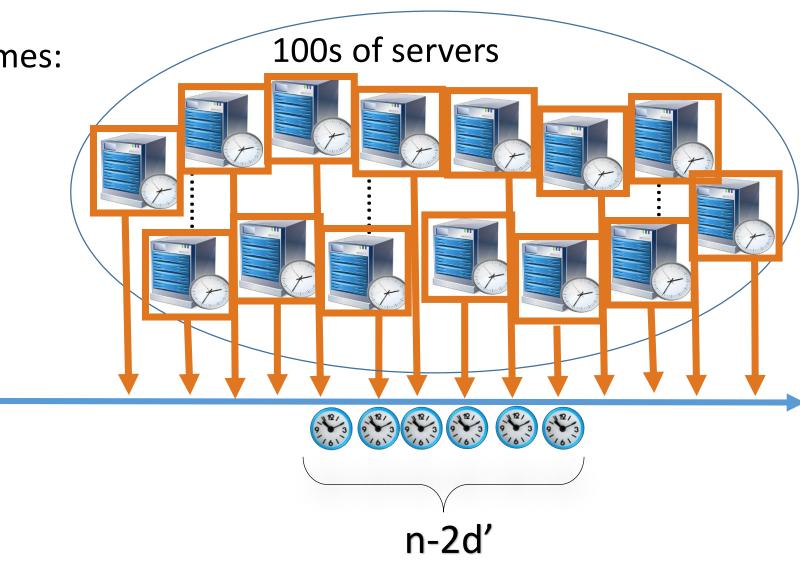
Check:


- Then:
 - Use average as the new client time
- Else
 - Resample

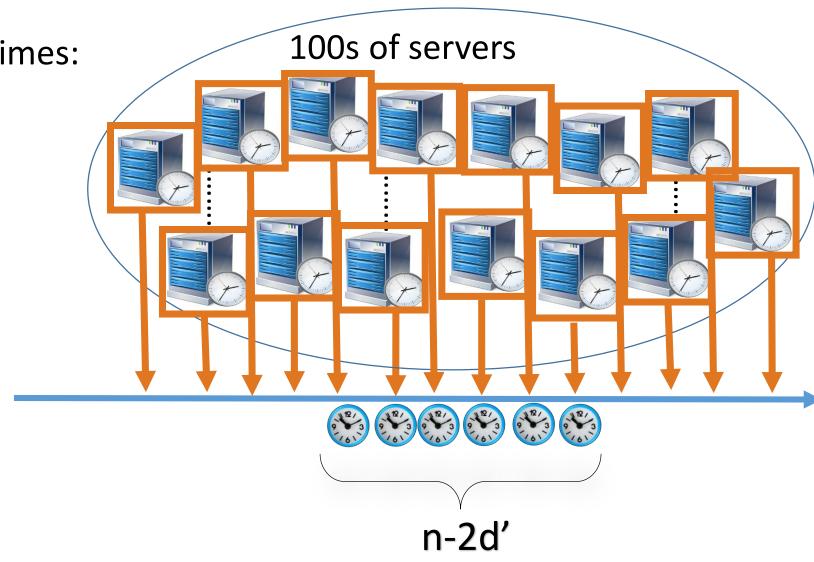
if check & resample failed k times:


∖\ panic mode

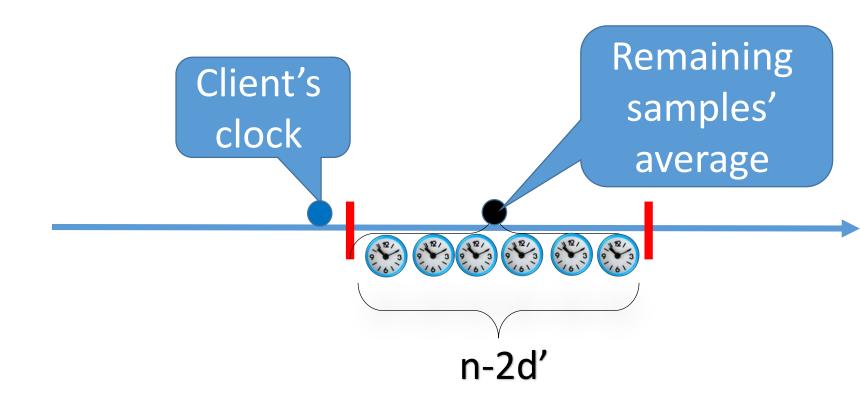
Sample all servers


if check & resample failed k times: \\ panic mode

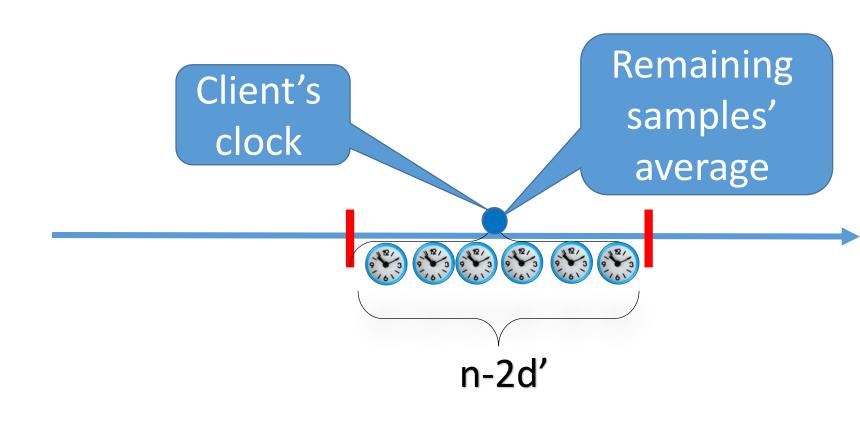
- Sample all servers
- Drop outliers


if check & resample failed k times:

- Sample all servers
- Drop outliers


if check & resample failed k times:

- Sample all servers
- Drop outliers
- Use average as new client time


if check & resample failed k times:

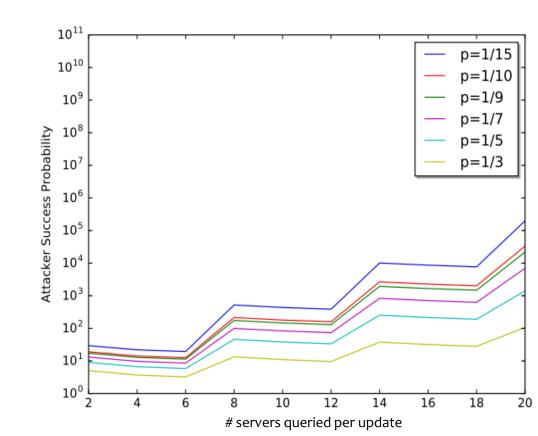
- Sample all servers
- Drop outliers
- Use average as new client time

if check & resample failed k times:

- Sample all servers
- Drop outliers
- Use average as new client time

Security Guarantees

Shifting time at a Chronos client by at least **100ms** from the UTC will take the attacker at least **22 years** in expectation


- ... when considering the following parameters:
 - ➤ Server pool of 500 servers, of whom 1/7 are controlled by an attacker
 - > 15 servers queried once an hour
 - \triangleright Good samples are within 25ms from UTC (ω =25)

 These parameters are derived from experiments we performed on AWS servers in Europe and the US

Chronos vs. Current NTP Clients

- Consider a pool of 500 servers, a p-fraction of which is controlled by an attacker.
- We compute the attacker's probability of successfully shifting the client's clock
 - > for traditional NTP client
 - > for Chronos NTP client

We plot the ratio between these probabilities

Scenario 1: #(() ≤ d #(() ≥ m-d

Scenario 1: #() ≤ d #() ≥ m-d

Optimal attack strategy:

 All malicious samples are lower than all good samples
 (Or, all malicious samples are higher than all good samples)

Scenario 1: #() ≤ d #() ≥ m-d

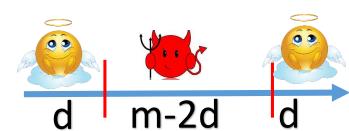
- Optimal attack strategy:
 All malicious samples are lower than all good samples
 (Or, all malicious samples are higher than all good samples)
- Chronos enforces an upper bound of 4ω on the permissible shift from the local clock (otherwise the server pool is re-sampled)

Scenario 1: #() ≤ d #() ≥ m-d

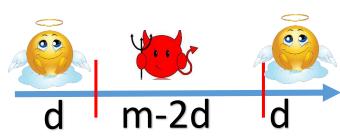
- Optimal attack strategy:

 All malicious samples are lower than all good samples
 (Or, all malicious samples are higher than all good samples)
- Chronos enforces an upper bound of 4ω on the permissible shift from the local clock (otherwise the server pool is re-sampled)
- The probability that #(ﷺ)≥m-d is extremely low (see paper for detailed analysis)
 The probability of repeated shift is negligible.

Scenario 1: #(() ≥ m-d

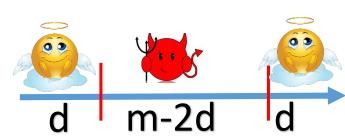

- Optimal attack strategy:

 All malicious samples are lower than all good samples
 (Or, all malicious samples are higher than all good samples)
- Chronos enforces an upper bound of 4ω on the permissible shift from the local clock (otherwise the server pool is re-sampled)
- The probability that #(****)≥m-d is extremely low (see paper for detailed analysis)
 The probability of repeated shift is negligible.


Consequently, a significant time shift is practically infeasible

Scenario 2: #() > d #() < m-d

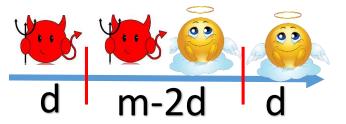
- **Scenario 2**: #() > d #() < m-d
- Option I: Only malicious samples remain
 - \triangleright Assumption: every good sample at most ω -far from UTC
 - >At least one good sample on each side
 - → All remaining samples are between two good samples
 - \rightarrow All remaining samples are at most ω -away from UTC



- **Scenario 2**: #() > d #() < m-d
- Option I: Only malicious samples remain
 - \triangleright Assumption: every good sample at most ω -far from UTC
 - >At least one good sample on each side
 - → All remaining samples are between two good samples
 - \rightarrow All remaining samples are at most ω -away from UTC
- Option II: At least one good sample remains
- \triangleright Enforced: Remaining samples within the same 2ω -interval
- \triangleright Remaining malicious samples are within 2ω from a good sample
 - \rightarrow Remaining malicious samples are at most 3ω -away from UTC

- **Scenario 2**: #() > d #() < m-d
- Option I: Only malicious samples remain
 - \triangleright Assumption: every good sample at most ω -far from UTC
 - >At least one good sample on each side
 - → All remaining samples are between two good samples
 - \rightarrow All remaining samples are at most ω -away from UTC
- Option II: At least one good sample remains
- \triangleright Enforced: Remaining samples within the same 2ω -interval
- \triangleright Remaining malicious samples are within 2 ω from a good sample
 - \rightarrow Remaining malicious samples are at most 3ω -away from UTC

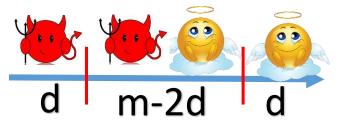
Hence, these attack strategies are ineffective


Can Chronos be exploited for DoS attacks?

Chronos repeatedly enters Panic Mode.

- Optimal attack strategy requires that attacker repeatedly succeed in accomplishing
 #(**) > d
 #(**) > d
 - At least one malicious sample remains
 - Malicious sample violates condition that all remaining samples be clustered
 - This leads to resampling (until Panic Threshold is exceeded).

Can Chronos be exploited for DoS attacks?


• Chronos repeatedly enters Panic Mode.

- Optimal attack strategy requires that attacker repeatedly succeed in accomplishing
 #(**) > d ** #(**) * m-d
 - At least one malicious sample remains
 - Malicious sample violates condition that all remaining samples be clustered
 - This leads to resampling (until Panic Threshold is exceeded).

Can Chronos be exploited for DoS attacks?

Chronos repeatedly enters Panic Mode.

- Optimal attack strategy requires that attacker repeatedly succeed in accomplishing
 #(**) > d
 #(**) > d
 - At least one malicious sample remains
 - Malicious sample violates condition that all remaining samples be clustered
 - This leads to resampling (until Panic Threshold is exceeded).

Even for low Panic Threshold (k=3), probability of success is negligible (will take attacker decades to force Panic Mode)

Observations and Extensions

 When the pool of available servers is small (say, 3), using Chronos's sampling scheme on the entire server pool (n=m), yields meaningful <u>deterministic</u> security guarantees.

Important implications for PTP security

Chronos Vs. Current NTP Architecture

	Current NTP	Chronos
preprocessing		Collect NTP server addresses to form a (large) server pool
Poll process	Send queries to several NTP servers from an externally provided list	M (e.g., tens) servers randomly chosen from the (large) pool
Selection process	 Apply Marzullo's algorithm to identify a majority of samples that (approximately) agree on the time Take average of remaining samples If new time far from current time → update. Else → nothing 	 Remove d lowest and d highest time samples Verify remaining samples are clustered, else → resample Take average of remaining samples If new time close to current time → update. Else → resample

Conclusion

- NTP is very vulnerable to time-shifting attacks by MitM attackers
 - > Not designed to protect against **strategic** man-in-the-middle attacks
 - > Attacker who controls a few servers/sessions can shift client's time

- We presented the Chronos NTP client
 - > Provable security in the face of powerful and sophisticated MitM attackers
 - > Backwards-compatibility with legacy NTP (software changes to client only)
 - > Low computational and communication overhead

Future Research

- Tighter security bounds?
- Weighing servers according to reputation?
- Benefits of server-side changes?
- Extensions to other time-synchronization protocols (e.g., PTP)?

