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Since Singapore
l Brian Campbell and Nat Sakimura co-authors
l Incorporated

l draft-campbell-oauth-resource-indicators-02
l draft-sakimura-oauth-meta-08

l -01 released
l Resource is URI
l All OAuth grant types supported
l Link header used for discovery
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AS Discovery Problem

l OAuth 2 presumes static relationship between 
authorization server and protected resource that is 
known a priori by client

l Global systems have similar protected resources, that 
are managed by different authorization servers. 
Eg. different geopolitical regions.

l Large, distributed systems need to evolve the 
relationship between authorization servers and 
protected resources.

l Clients need to dynamically learn the authorization 
server for a given protected resource at run time.
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Client Accessing Global 
Protected Resources
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Access Token Reuse
l Client accesses resource server it was not 

granted access to
l Resource Server reuses client’s access token 

at another resource server
l Solutions:

l 1) Audience restricted access token
l 2) Sender constrained access token
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Audience Restricted
Access Token
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Parties are both
client and resource server
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Eg: UTM Security Model
l UTM: UAS Traffic Management
l UAS: Unmanned Aircraft System (drones)
l Aviation authority is Authorization Server and 

determines scopes for each party
l Each party may call any other party
l One access token per client simpler for AS

l Server constricted access tokens
l NOT COVERED IN CURRENT DRAFT
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HTTP 401 response
l Client discovers Authorization Server
l Client discovers resource URI
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer ...
Link: <https://api.example.com/resource">;

rel="resource_uri",
<https://as.example.com/.well-known/oauth-authorization-server>; 

rel="oauth_server_metadata_uri”

l Client confirms resource URI in host and path
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Access Token Request
l Client includes resource URI in request

grant_type=client_credentials
&scope=example_scope
&resource=https%3A%2F%2Fapi.example.com%2Fresource
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Access Token Includes 
Resource URI

l If JWT, “aud” includes resource URI
l Resource server checks resource URI is in 

access token
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Discussion
l URI for resource?
l “Link” header

l “resource_uri”

l “oauth_server_metadata_uri”

l Support multiple resources in access token 
request?

l Client PoP mechanisms?
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Next Steps

l Add resource URI to code flow
l Sender constrained access tokens?
l OAuth WG adoption?
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