
draft-hardt-oauth-distributed

Dick Hardt
IETF 102, Montreal

July 2018

Distributed OAuth

1

*



Since Singapore
l Brian Campbell and Nat Sakimura co-authors
l Incorporated

l draft-campbell-oauth-resource-indicators-02
l draft-sakimura-oauth-meta-08

l -01 released
l Resource is URI
l All OAuth grant types supported
l Link header used for discovery

2



AS Discovery Problem

l OAuth 2 presumes static relationship between 
authorization server and protected resource that is 
known a priori by client

l Global systems have similar protected resources, that 
are managed by different authorization servers. 
Eg. different geopolitical regions.

l Large, distributed systems need to evolve the 
relationship between authorization servers and 
protected resources.

l Clients need to dynamically learn the authorization 
server for a given protected resource at run time.

3



Client Accessing Global 
Protected Resources

4

S3

EC2

Authorization
Server

.CN

S3

EC2

Authorization
Server

.US

S3

EC2

Authorization
Server

.EU

Client



Access Token Reuse
l Client accesses resource server it was not 

granted access to
l Resource Server reuses client’s access token 

at another resource server
l Solutions:

l 1) Audience restricted access token
l 2) Sender constrained access token

5



Audience Restricted
Access Token

6

S3

EC2

Authorization
Server

.CN

S3

EC2

Authorization
Server

.US

S3

EC2

Authorization
Server

.EU

Client

token.CN token.EU
token.US



Parties are both
client and resource server

7

A

B

C

Sender constrained access token



Eg: UTM Security Model
l UTM: UAS Traffic Management
l UAS: Unmanned Aircraft System (drones)
l Aviation authority is Authorization Server and 

determines scopes for each party
l Each party may call any other party
l One access token per client simpler for AS

l Server constricted access tokens
l NOT COVERED IN CURRENT DRAFT

8



HTTP 401 response
l Client discovers Authorization Server
l Client discovers resource URI
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer ...
Link: <https://api.example.com/resource">;

rel="resource_uri",
<https://as.example.com/.well-known/oauth-authorization-server>; 

rel="oauth_server_metadata_uri”

l Client confirms resource URI in host and path

9



Access Token Request
l Client includes resource URI in request

grant_type=client_credentials
&scope=example_scope
&resource=https%3A%2F%2Fapi.example.com%2Fresource

10



Access Token Includes 
Resource URI

l If JWT, “aud” includes resource URI
l Resource server checks resource URI is in 

access token

11



Discussion
l URI for resource?
l “Link” header

l “resource_uri”

l “oauth_server_metadata_uri”

l Support multiple resources in access token 
request?

l Client PoP mechanisms?

12



Next Steps

l Add resource URI to code flow
l Sender constrained access tokens?
l OAuth WG adoption?

13


