Toward a Network Telemetry Framework

draft-song-ntf-02

Haoyu Song, Tianran Zhou, Zhenbin Li (Huawei)
Giuseppe Fioccola (Telecom Italia)
Zhenqiang Li (China Mobile)
Pedro Martinez-Julia (NICT)
Laurent Ciavaglia (Nokia)
Aijun Wang (China Telecom)
What’s new

• New co-authors: Giuseppe Fioccola (Telecom Italia), Zhenqiang Li (China Mobile), Pedro Martinez-Julia (NICT), Laurent Ciavaglia (Nokia) and Aijun Wang (China Telecom)

• Clearer definition and characteristics summary of network telemetry
 • Clear distinction between conventional OAM and telemetry

• New module for the framework: External data and event telemetry

• New content for Control Plane Telemetry: identify the requirements and challenges in details. BMP extensions are identified as NMP (Network monitoring Protocol)

• New content for Data Plane Telemetry:
 • Technique Classification: Active and Passive, In-Band and Out-of-Band, E2E and In-Network, Flow-Path-Node
 • New technology: IPFPM alternately mark for point-to-point and multipoint-to-multipoint
Challenges of Today’s Networks

- Networks become more and more complex
 - Cloud, 5G, IoT, overlay, underlay, VPN, slicing, ...
- Applications are sensitive to network performance
 - Bandwidth, latency, jitter, packet drop, network churn, ...
- Network visibility is important for
 - Network OAM
 - Network Provision
 - Network Planning
 - Network Security
 - Network Troubleshooting
- Yet our old tools for network visibilities are outdated
 - Lack of application level visibility
 - Lack of automation tools
Challenges of the Future Networks

• Network management and service evolve to become intent-driven and automatic
 • Reduce human labor
 • Improve agility and performance
 • Optimize resource efficiency

• Network visibility through telemetry is pivotal to realize intent-driven autonomous networks
 • Telemetry can provide rich, reliable and real-time data, and build a close-loop network service management system.
 • Telemetry should be promoted as a first class citizen in network technologies and protocols
 • Telemetry work should be better unified, consolidated, and integrated to support the future networks
Current Solution: Network OAM

• Conventional OAM is inefficient and insufficient to sustain future autonomous networks
 • SNMP is based on low frequent polling and CLI
 • Lack of coverage, timeliness, and accuracy

• Existing OAM mechanisms are disaggregated
 • Piecemeal vertical solutions are hard to be composed into a cohesive one
 • Repetitive and redundant work, lack of collaboration and consolidation
 • Designed as afterthought patches and on a case-by-case basis, lack of holistic and systematic view

• A new brood of technologies is expected
 • A framework is needed to normalize the concepts, terms, and technology/standard developments
 • Telemetry to replace OAM as the standard term to achieve network visibility
Conventional Network OAM vs. Network Telemetry

- Poll based vs. Push based
- Conventional Network Oriented vs. SDN-based
- Data Elements vs. Streaming Data
- Small Data vs. Big Data
- Human consumer vs. Machine Consumer
- Manual vs. Automated
- CLI vs. Programming
- Reactive vs. Proactive
- Trouble Shooting vs. Prediction
- Independent Tools vs. Unified and correlated

Technologies:
- NETCONF
- IPFPM
- RESTCONF
- YANG
- IOAM
- sFLOW
- gRPC
Network Telemetry Framework (NTF)

- Control Plane Telemetry
- Data Plane Telemetry
- Management Plane Telemetry
- External Data and Event Telemetry

E2E Solution to Facilitate Machine Learning and Big Data Analytics

- Data Source
 - YANG Data store
 - Control Protocol, Network State
 - Flow/Packet Statistics & States

- Data Subscription
 - gRPC, YANG PUSH
 - NETCONF/YANG, BGP
 - NETCONF/YANG FSM

- Data Generation & Processing
 - Dynamic network probe (DNP)
 - Soft DNP
 - INT/IOAM, IPFPM Hard DNP

- Data Export
 - gRPC, YANG Push UDP
 - BMP
 - IPFIX UDP

Other Huawei Tools

- ONAP
- Open day
- OpenStack
- Kafka
- logstash
- Spark
- Hadoop
Telemetry Use Cases

• Intent and Policy Verification
• SLA Compliance Verification
• Root Cause Analysis
• Traffic Engineering and Network Planning
• Event Tracking and Prediction
Challenges of Network Telemetry

• Dynamics
 • Continuous, real-time, and interactive

• Multiple sources
 • In device, in network, and out of network
 • Passive, active, and hybrid

• Performance impact
 • Bandwidth and latency
 • Data retention
 • Observer effect
Recap & Conclusion

• Promote the significance of telemetry work in IETF
 • Keep the big picture in mind (Intent-Driven Autonomous Network)
 • Make IETF the leading SDO in this area

• Formalize the telemetry-related terms and technology classification in IETF
 • Network measurement, troubleshooting, and monitoring are all data oriented and serve for the network visibility
 • Consolidate existing work
 • Guide future work

• Call for collaboration from operators and vendors