Discarding Handshake
Keys

QUIC IETF 102, Montreal, July 2018
Martin Thomson



When Can Keys Be Destroyed? (#1544)

Initial (CRYPTO(ClientHello))
+0-RTT (STREAM)

Initial (ACK, CRYPTO(ServerHello))
+Handshake (CRYPTO(..., Finished))
+1-RTT (STREAM)

Initial (ACK)
+0-RTT(CRYPTO(EndOfEarlyData))
+Handshake (ACK, CRYPTO(..., Finished))
+1-RTT(ACK, STREAM)

Handshake (ACK)
+1-RTT(ACK, STREAM)



https://github.com/quicwg/base-drafts/issues/1544

Simple Solution: Timers

Treat each packet number space separately

A space is done when both read and write keys for the next
space are ready

Set a timer when done and destroy the keys when it expires
... until then, resend CRYPTO and send ACK as normal
... afterwards, drop packets protected with those keys

The timer can be long-ish (no practical harm in infinite)

Sauvic




Separate Packet Number Spaces

Initial (CRYPTO(ClientHello))

Initial (ACK, CRYPTO(ServerHello))

Initial
Timer
Start

Initial (ACK)

Handshake (CRYPTO(..., Finished))

Handshake (ACK, CRYPTO(..., Finished))

Initial
Timer
Start

Handshake
Timer
Start

Handshake (ACK)

{

Handshake
Timer
Start

|

Qauvuic




Optimization: Implicit Acknowledgment

Receiving Handshake packets implies that all CRYPTO
frames from Initial packets were received

Receiving 1-RTT packets at a server means that all CRYPTO
frames in Handshake packets were received by the client

Receiving acknowledgments for 1-RTT packets at a client
means that all CRYPTO frames in Handshake and O-RTT
packets were received by a server

Stop sending those CRYPTO frames then

Let the packets with ACK frames that appear afterwards drop

Qauic



Alternative: HANDSHAKE_DONE Frame

An explicit signal that an endpoint believes that the
handshake is done

On receipt endpoints could destroy all handshake keys

+Handshake (ACK, CRYPTO(..., Finished))
+1-RTT(ACK, HANDSHAKE_DONE, STREAM)

Handshake (ACK)
+1-RTT(ACK, HANDSHAKE_DONE, STREAM)

Doesn’t address O-RTT receive keys at the server

Qauvuic



Proposal: Document Timer-based Cleanup

Optimizations are fun, but they don't need to be standard

Qauvuic



