
Stream0 Summary
QUIC, Stockholm, July 2018

Overview

● Issues and Goals
● Changes

○ QUIC Record Layer for TLS
○ Separate Packet Number Spaces
○ QUIC Stateless Rejects

TLDR: This solves issues raised in London and others

“Stream 0” Issues (Data)

● Partly encrypted, partly not
○ Retransmission must maintain original encryption level

● Tight coupling with the TLS stack
○ Boundaries between flights
○ Is this an SH or an HRR (or a stateful versus stateless HRR go)

● Exempt from flow control during the handshake only
● Mismatch between QUIC and TLS 1.3 notions of 0-RTT

boundaries

“Stream 0” Issues (ACKs)

● Holes from unencrypted packets being ACKed in
encrypted packets #1018

● Complicated ACK rules
● Contradictions between ACKs and handshake state

○ SFIN means CFIN received but might not contain ACKs
● Reliability for the CFIN #1242
● Optimistic ACK attacks on handshake required address

verification

https://github.com/quicwg/base-drafts/issues/1018
https://github.com/quicwg/base-drafts/issues/1242

Background: TLS 1.3 over TCP

● TLS handshake messages are carried in TLS records
● TLS records

○ Basic unit of encryption
○ Typed (handshake, application data, etc.)

● Records are carried over TCP

QUIC draft-12

● TLS records carried in QUIC stream 0
● Stream frames then carried in QUIC packets

○ These packets are always encrypted
○ TLS encryption boundaries match QUIC encryption boundaries

(theoretically)

QUIC draft-13

● TLS handshake messages carried directly over QUIC packets
○ In special CRYPTO{_HS} frames
○ TLS records replaced with QUIC packets

● QUIC packets encrypted using keys from TLS key schedule*

 * Potentially with key separation

CRYPTO_HS frame

CRYPTO_HS is similar to a STREAM frame

● Not FIN-able
● No StreamID
● Each encryption level re-starts at offset 0
● Not flow controlled

Benefits of new approach

● Clear rules about where every handshake message is sent
○ These match the TLS rules
○ Trivial to enforce

● QUIC doesn’t need to know TLS handshake state
● No double encryption
● Built-in path validation

○ ACKs encrypted with handshake keys prove on-path

Costs

● New API to expose TLS key schedule to QUIC
○ Prototype implementations in: PicoTLS, Mint, BoringSSL
○ Successful interop between Quicly (PicoTLS) and Minq (Mint)

Separate Packet Number Spaces: Issues

● Fixing packet ‘shadowing’ attack requires knowing
encryption level of packets being acknowledged #1018
○ An attacker may inject an unprotected packet that causes the

sender to incorrectly believe its packet has been delivered.

● Acknowledgement of packets at one level should not
detect loss of packets at a higher encryption level #1413
○ Loss recovery will spuriously retransmit undecryptable packets

https://github.com/quicwg/base-drafts/issues/1018
https://github.com/quicwg/base-drafts/issues/1413

Separate Packet Number Spaces

ACK frames apply only to the packet number space they’re in

● A packet number could be present in multiple spaces
● 0-RTT and 1-RTT packets are in a single space

○ The transition to 1-RTT is more analogous to a key phase change
○ Acknowledgement of 1-RTT packets can declare 0-RTT packets

lost

Separate Packet Number Spaces: Benefits

● Solves the packet shadowing attack
● Corrects loss detection to deal with encryption level
● Clarifies what level an ACK can be sent at
● Easy to handle encryption level in incoming acks
● Dense ACK frames
● Removes temptation to implement

implementation-dependent recovery optimizations
● Simplifies implementation (each space is just separate)

Separate Packet Number Spaces: Costs

● May require a sent_packets datastructure per encryption
level

● Must store an ACK datastructure per encryption level
during the handshake

● More coalesced packets

QUIC Transport Retry: Motivation

Current Retry complicates TLS interaction #1094, #1233

Generating a Retry requires cleverness in TLS to preserve the
handshake transcript

Ideally DDoS mitigation is as cheap as possible

 => Move Retry into the transport

https://github.com/quicwg/base-drafts/issues/1094
https://github.com/quicwg/base-drafts/issues/1233

QUIC Transport Retry

Client uses token to prove source address for 0RTT or Retry

Server supplies a short-lived token in a Retry packet

Server supplies a longer-lived token in NEW_TOKEN frame

Long Header
DCI Length

Token Content

Retry
Long Header

Token Length
Token Content

Initial

Payload
(Initial encrypted)

 Original Dest. CID

QUIC Transport Retry: Benefits

● Minimize CPU by not protecting Retry
○ Similar to SYN cookies

● No need to consult a TLS stack to generate Retry
● No need to know TLS handshake state

○ Things automatically end up in the right packet type
○ HRR is only used for KeyShare correction

QUIC Transport Retry: Issues

● Lots of errors in the initial description
● Client’s Initial DCID is unauthenticated #1486
● Looping with Retry Packets #1451

Martin will talk about these later...

https://github.com/quicwg/base-drafts/issues/1486
https://github.com/quicwg/base-drafts/issues/1451

