Stream0 Summary
QUIC, Stockholm, July 2018



Overview

e |ssues and Goals

e (Changes
o QUIC Record Layer for TLS
o Separate Packet Number Spaces
o QUIC Stateless Rejects

TLDR: This solves issues raised in London and others

Qauic



“Stream 0” Issues (Data)

e Partly encrypted, partly not
o Retransmission must maintain original encryption level

e Tight coupling with the TLS stack

o Boundaries between flights
o Is this an SH or an HRR (or a stateful versus stateless HRR go)

e Exempt from flow control during the handshake only
e Mismatch between QUIC and TLS 1.3 notions of O-RTT
boundaries

Qauic



“Stream 0” Issues (ACKs)

e Holes from unencrypted packets being ACKed in
encrypted packets #1018
e Complicated ACK rules

e Contradictions between ACKs and handshake state
o SFIN means CFIN received but might not contain ACKs

e Reliability for the CFIN #1242
e Optimistic ACK attacks on handshake required address
verification

Qauic


https://github.com/quicwg/base-drafts/issues/1018
https://github.com/quicwg/base-drafts/issues/1242

Background: TLS 1.3 over TCP

TLS messages: SH EE | Certificate | Fin NST
TLS records: | plaintext HS 1RTT
TCP Segments: Segment 1 Segment 2

e TLS handshake messages are carried in TLS records
e TLSrecords

o Basic unit of encryption

o Typed (handshake, application data, etc.)
e Records are carried over TCP

Qavuic



QUIC draft-12

TLS messages: SH EE | Certificate | Fin NST
TLS records: | plaintext HS 1RTT
QUIC frames: streamO stream0 stream0
QUIC packets: HS HS 1RTT
UDP datagrams: datagram datagram

e TLSrecords carried in QUIC stream O
e Stream frames then carried in QUIC packets
o These packets are always encrypted
o TLS encryption boundaries match QUIC encryption boundaries
(theoretically)

Qavuic



QUIC draft-13

TLS messages:
QUIC frames:
QUIC packets:
UDP datagrams:

e TLS handshake messages carried directly over QUIC packets

SH

EE

Certificate

Fin

NST

CRYPTO_HS | CRYPTO _HS

CRYPTO_HS

CRYPTO HS

Initial

HS

HS

1IRTT

datagram

datagram

o Inspecial CRYPTO{_HS} frames

o TLS records replaced with QUIC packets

e QUIC packets encrypted using keys from TLS key schedule*

Qavuic

* Potentially with key separation




CRYPTO_HS frame

CRYPTO_HS is similar to a STREAM frame

Not FIN-able

No StreamlID

Each encryption level re-starts at offset O
Not flow controlled



Benefits of new approach

e (lear rules about where every handshake message is sent

o These match the TLS rules
o Trivial to enforce

e QUIC doesn't need to know TLS handshake state
e No double encryption

e Built-in path validation
o ACKs encrypted with handshake keys prove on-path

Qavuic



Costs

e New API to expose TLS key schedule to QUIC

o Prototype implementations in: PicoTLS, Mint, BoringSSL
o Successful interop between Quicly (PicoTLS) and Ming (Mint)



Separate Packet Number Spaces: Issues

e Fixing packet 'shadowing’ attack requires knowing

encryption level of packets being acknowledged #1018
o An attacker may inject an unprotected packet that causes the
sender to incorrectly believe its packet has been delivered.

e Acknowledgement of packets at one level should not

detect loss of packets at a higher encryption level #1413
o Loss recovery will spuriously retransmit undecryptable packets

Qavuic


https://github.com/quicwg/base-drafts/issues/1018
https://github.com/quicwg/base-drafts/issues/1413

Separate Packet Number Spaces

ACK frames apply only to the packet number space they're in

e A packet number could be present in multiple spaces
e (O-RTT and 1-RTT packets are in a single space

o The transition to 1-RTT is more analogous to a key phase change
o Acknowledgement of 1-RTT packets can declare O-RTT packets
lost



Separate Packet Number Spaces: Benefits

Solves the packet shadowing attack

Corrects loss detection to deal with encryption level
Clarifies what level an ACK can be sent at

Easy to handle encryption level in incoming acks
Dense ACK frames

Removes temptation to implement
implementation-dependent recovery optimizations
Simplifies implementation (each space is just separate)

Qavuic



Separate Packet Number Spaces: Costs

e May require a sent_packets datastructure per encryption
level

e Must store an ACK datastructure per encryption level
during the handshake

e More coalesced packets



QUIC Transport Retry: Motivation

Current Retry complicates TLS interaction #1094, #1233

Generating a Retry requires cleverness in TLS to preserve the
handshake transcript

ldeally DDoS mitigation is as cheap as possible

=> Move Retry into the transport

Qavuic


https://github.com/quicwg/base-drafts/issues/1094
https://github.com/quicwg/base-drafts/issues/1233

QUIC Transport Retry

Retry Initial
Long Header Long Header
DCI Length Token Length
Original Dest. CID Token Content
Token Content
Payload
(Initial encrypted)

Client uses token to prove source address for ORTT or Retry
Server supplies a short-lived token in a Retry packet

Server supplies a longer-lived token in NEW_TOKEN frame
Qavuic



QUIC Transport Retry: Benefits

e Minimize CPU by not protecting Retry
o Similar to SYN cookies

e No need to consult a TLS stack to generate Retry
e No need to know TLS handshake state

o Things automatically end up in the right packet type
o HRRis only used for KeyShare correction



QUIC Transport Retry: Issues

e Lots of errors in the initial description
e Client's Initial DCID is unauthenticated #1486
e Looping with Retry Packets #1451

Martin will talk about these later...

Qavuic


https://github.com/quicwg/base-drafts/issues/1486
https://github.com/quicwg/base-drafts/issues/1451

