A Survey of Transport Security Protocols draft-taps-transport-security Tommy Pauly (tpauly@apple.com) Colin Perkins (csp@csperkins.org) Kyle Rose (krose@krose.org) Christopher A. Wood (cawood@apple.com) TAPS IETF 102, July 2018, Montreal ## Updates - Improve protocol justification text, and sort protocols based on use and impact - Canonicalization of security feature set - Interface cleanup ## Security Feature Set - Forward-secure key establishment - Cryptographic algorithm negotiation - Stateful and stateless cross-connection session resumption - Peer authentication - Mutual authentication - Record confidentiality and integrity (partial confidentiality and integrity, too) • ## Mandatory Features - Segment or datagram encryption and authentication - Forward-secure key establishment - Public key (raw- or certificate-based) authentication - Responder authentication - Pre-shared key support ## Optional Feature Applicability Optional features are optional, and applicable to some protocols | + | + | | + | | + | - | + | - | + | - | |-----------------|---------|----|---------|-----|---------|-----------|---------|--------------|---------|--------------| | Protocol | AN | AD | MA | DM | CM | sv | AFN | СХ | sc | LHP | | TLS | S | S | S | S | U* | M | s . | S | S | S | | DTLS |
 s | s |
 s | S | s | M | S | s |
 s |
 S | |
 IETF QUIC |
 s | S |
 S | S |
 S | M | S S | S |
 s | S | |
 IKEv2+ESP |
 S | s |
 M | S |
 S | M |
 S | S |
 S | S | |
 SRTP+DTLS |
 S | S |
 S | S |
 U | M | s
S | S |
 S | υ | |
 tcpcrypt |
 s | М |
 ប | U** | U* | M | U | ָ
U |
 s | υ | |
 WireGuard |
 ប | s |
 M | S | U | M | U | ָ
<u></u> |
 ប | S+ | |
 MinimalT |
 ប | υ |
 M | S |
 M | M | U | ע |
 ប | s | | CurveCP |
 ប | U |
 s | S |
 M | M |
 U |
 ប |
 ប | S | M=Mandatory S=Supported but not required U=Unsupported *=On TCP; MPTCP would provide this ability **=TCP provides SYN cookies natively, but these are not cryptographically strong +=For transport packets only Systems wanting to provide cryptographic algorithm negotiation (AN) and mutual authentication (MA) can support protocols in blue | + | Protocol | AN |
 AD | MA | +
 DM | CM | sv |
 AFN | CX |
 SC | +
 LHP | |---|-----------|----|---------------|----|---------------|-------------|-------------|-----------|-------|-------------|----------------| | | TLS | S | S | S | s | U* | M | s . | S | S | S | | | DTLS | s |
 S | s |
 s | S | M | S | s | s
S | s | | | IETF QUIC | S |
 S | s |
 s | s | M | S | s | s
 s | s | | | IKEv2+ESP | s |
 S | М |
 s | s | M | S | s | s
 s | s | | | SRTP+DTLS | s |
 S | s |
 s | U U | M |
 S | s | s
 s |
 U | | | tcpcrypt | S |
 M | U |
 U**
 | U* | M
M | U
I | Ū |
 S | U | | | WireGuard | Ū |
 ន | М |
 s | U | M | ָ
ט | Ū | U |
 S+
 | | | MinimalT | Ū | U | М |
 s | M
M | M | U | Ū |
 U | | | | CurveCP | U |
 U
 | S |
 s
 |
 M
 |
 M
 |
 U | U
 |
 U
 | | M=Mandatory S=Supported but not required U=Unsupported *=On TCP; MPTCP would provide this ability **=TCP provides SYN cookies natively, but these are not cryptographically strong +=For transport packets only ## Example Systems which MUST provide connection mobility (CM) and session caching and management (SC) should implement protocols in blue | 4 | | - | - | - | - | | + | | - | - | ++ | |---|-----------|-----------|-----------|-----------|--------------|----|---------|---------|-----------|-----------|----------| | ا | Protocol | AN | AD | MA | DM | CM | sv | AFN | СХ | SC | LHP | | | TLS | S | S | S | S | U* | M | S | S | S | S | | | DTLS | s
S | S | S | S | S |
 M | S | s | S | | | | IETF QUIC | s
S | S | S | S | S |
 M | S | S | S | | | | IKEv2+ESP | s
S | s | M | S | S |
 M | S | s | S | | | | SRTP+DTLS |
 s | s | S | S | U |
 M | S | S | S |
 U | | | tcpcrypt | s
S | М | U | П** | U* |
 M | ט | U | S |
 U | | | WireGuard |
 U | s | M | S | Ū |
 M | ט | Ū |
 ប |
 S+ | | | MinimalT |
 U | Ū | M | S | M |
 M | ט | Ū |
 ប | | | | CurveCP |
 U | U |
 S | s | М |
 M | U | U |
 U | s | M=Mandatory S=Supported but not required U=Unsupported *=On TCP; MPTCP would provide this ability **=TCP provides SYN cookies natively, but these are not cryptographically strong +=For transport packets only #### Informal Feedback Remove protocol details that do not affect features or interfaces Example: IKEv2 details are irrelevant #### Informal Feedback Trying to generalize security interfaces for all protocols is **hard** - Generic and protocol-specific interfaces must be provided. - Generic ones permit protocols to be added, specific ones permit applications to tune particular protocol behavior (and possibly ossify) #### Informal Feedback Protocol equivalence MUST be based on name, not feature availability - We cannot (yet) prove security protocol equivalence, so do not attempt to do so - Implications on TAPS architecture and implementation drafts ### Next Steps - Formally circulate draft to security area for feedback - Consider relocating "obscure" protocols, e.g., MinimalT and CurveCP ## QUESTIONS?