A Yang Data Model for ACTN VN Operation

draft-ietf-teas-actn-vn-yang-01

Young Lee, Dhruv Dhody, Daniele Ceccarelli Igor Bryskin, Bin Yeong Yoon, Qin Wu, Peter Park

Status

- Adopted as WG draft after IETF 101.
- Integrated/consolidated with draft-wu-opsawg-network-overlay-resource-model-00 with this draft (new co-authors)!
- Clarified the relationship of the draft with other service models and TE-topology:
 - The VN model defined in this document can also work together with other customer service models such as L3SM [RFC8299], L2SM and L1CSM to provide a complete life-cycle service management and operations.
 - The actual VN instantiation and computation is performed with "Connectivity Matrices" sub-module of TE-Topology Model which provides TE network topology abstraction and management operation.
 - Once TE-topology Model is used in triggering VN instantiation over the networks, TE-tunnel Model will inevitably interact with TE-Topology model for setting up actual tunnels and LSPs under the tunnels.

Next Step

- Work on Security and IANA Sections in the next revision.
- Refine the draft to make it ready for WG LC.

BACKUP!

TEAS WG @ IETF 102 4

- single node in the abstract TE Topology
- The abstract node has
 - connectivity-matrices
 - connectivity-matrix [id]
 - The attributes directly under container connectivitymatrices are the default attributes for all connectivitymatrix entries when the per entry corresponding attribute is not specified. When a per entry attribute is specified, it overrides the corresponding attribute directly under the container connectivity-matrices.

How: Reference to TE Topology Yang Model

Access	 AP/ VNAP -> LTP Ltp of type te-types:te-tp-id
Customer's Virtual Network	 VN -> Abstract Node vn-topology-id of type te-types:te-topology-id abstract-node -> /nw:networks/network/node/tet:te-node-id (reference)
Customer Site to Site connection	 VN-Member -> Entry in the connectivity matrix of the abstract node connectivity-matrix-id -> /nw:networks/network/node/tet:te/te- node-attributes/connectivity-matrices/connectivity-matrix/id (reference)

All parameters which are can be set as global attributes to VN are set in the connectivity-matrices (such as bandwidth) and an attribute for a particular VN-member is set in the connectivity-matrix [id] (such as explicit path)!

Duplicate parameters in ACTN VN Yang model are removed!

• VN is seen as edge to edge links (VN-members) setup as tunnels across underlying networks!

VN Type 1

- •VN 1
 - VN-Member 1 L1-L4
 - VN-Member 2 L1-L7
 - VN-Member 3 L2-L4
 - VN-Member 4 L3-L8
 - This VN has following properties
 - Bandwidth 500
 - Optimize by delay

Abstract Topology with a Single Node

VN Type 2

- •VN is seems as a topology of virtual nodes and links
- •To ease mapping between VN Yang Model and TE models, an abstract single node topology is created with VN topology as the underlay!
- •The same mapping as VN Type 1 is reused.
- VN 2
 - VN-Member 1: L1-L8 via S3, S67110, S11
 - Set via the underlay path in connectivity-matrix[id]

