
TLS-DNSSEC-CHAIN
IETF 102, TLS Working Group

Resolving the downgrade attack without narrowing the scope

Paul Wouters 
Senior Software Engineer, RHEL Security

tls dnssec chain downgrade attack prevention 2

_443._tcp.www.nohats.ca IN TLSA 3 1 1 <pkey sha256>

• Match resource (hostname + port) to a public key
• Live DNS data ensures freshness. Clients do not need data pinning, as everything is

DNSSEC based and is updated within DNS and its TTL / RRSIG lifetimes.
• Resists stripping, Denial of Existence (DoE) require signed NSEC/NSEC3 proofs.
• Overlapping TLSA records handle key rollover
• No dependency on WebPKI
• There is no “testing” mode. Data is either live in DNS or not. Publishing in DNS means

committing to the data

The DANE TLSA record

tls dnssec chain downgrade attack prevention 3

• DNSSEC adds latency (serialized round trips)
• Network path not always clean and usable for DNSSEC (accidental record mangling/

stripping)
• DNS record manipulation or stripping can lead to “bogus” or “indeterminate” state of

DNSSEC validation. (“glomar response”)

Last-mile obstacles

tls dnssec chain downgrade attack prevention 4

• Staple DNSSEC chain from root to TLSA
record in a TLS extension using RFC 7901
dnssec chains

• The TLS server updates its own stapled data
from live DNS (e.g. every hour)

• If no TLSA DNS record present in live DNS
data, staple proof of Denial of Existence
• Greenfield applications can require the

extension, and yet also work with domains
not using DANE / DNSSEC / TLSA

• Optional extension is pointless
because it can be stripped

• Client processes data as if it received
directly from DNS. It's not different from
receiving DNS data from recursive DNS
server's cache

• No pinning of DNS data involved:
• stapled data is "live DNS data"

snapshot. This is NOT HPKP.

TLS-DNSSEC-CHAIN extension

tls dnssec chain downgrade attack prevention 5

• The present draft fails to support incremental adoption by existing applications
• This means no chance of adoption in HTTPS, IMAP, NNTP, XMPP, SUBMIT, …
• With the extension subject to stripping:

• No added security, the whole extension is moot
• DANE-only clients have initially (and so forever) no clients. This actively prevents

deploying a DANE based PKI
• Clients that support using DANE or WebPKI get the security of the weakest
• Clients that support using DANE pinning on top of WebPKI gain nothing

• Only DNS-over-TLS clients apparently(?) suffer no consequences?
• Wouldn’t these fallback to plain DNS?

Defective Scope
Without extension pinning, the extension is vulnerable to a full downgrade attack

tls dnssec chain downgrade attack prevention 6

1. Do nothing
2. Fix everything in new TLS extension
3. Two zero bytes in this RFC, specify non-zero semantics in a separate update RFC
4. Two byte TLS extension pin TTL (in hours)
5. Variable-length (0..255) reserved field (default empty) in this RFC, syntax and semantics

in separate update RFC
6. Nested extension block (just like new TLS extension, but even more complicated)

Anti-Downgrade options

tls dnssec chain downgrade attack prevention 7

• Fails to address security considerations
• Leaves TLS client behaviour under-specified
• Some TLS clients will do TOFU and break

• No method for TLS server to test TLS extension without risking commitment
• Prevents major use case of incremental DANE adoption by existing TLS clients

• that (initially) mostly use just WebPKI
• Prevents major use case of enhancing WebPKI security with additional DANE security
• Will only be used by DNS-over-TLS clients that refuse fallback to plaintext DNS

• or “greenfield” implementations mandating this extension, no vendor stepped forward
• or “additive use case” clients, but no deployment path for security gain.

1. Do Nothing

tls dnssec chain downgrade attack prevention 8

• Leaves this RFC unable to support its most common use cases, and promotes insecure
deployments that leave in all downgrade attacks

• Would require a second TLS extension to pin itself AND the tls-dnssec-chain extension or needs
to obsolete this TLS extension.

• Needlessly complex committee design.
• A 2nd TLS extension will end in an identical discussion, except a name change of tls-dnssec-

chain-bis while deploying a flawed specification.
• Buys us nothing over doing it properly in 1 TLS extension (whether or not specified in 1 or 2

RFCs)
• This solution is awful as demonstrated with:

• https://tools.ietf.org/html/draft-asmithee-tls-dnssec-downprot-00

2. Fix everything in new TLS extension

tls dnssec chain downgrade attack prevention 9

• Add two zero bytes. Zero means "TLS client
MUST NOT pin extension”

• Supports TLS server experimentation
without commitment (prevents clients
interpreting unspecified as TOFU)

• Followup RFC documents non-zero
semantics for these two bytes

• Can be discussed in TLS WG
• Allows current document to proceed

• This is STS-lite, other STS features
• Test-mode make no sense here (DNS

data is already live)
• Subdomain scope drags in the public

suffix list, too complex for general use.
And TLSA records are scoped to just a
single port!

• Commits TLS WG to define the two bytes in
new document. Prevents stalling DANE PKI
deployments

3. Two zero bytes now, specify in followup RFC

tls dnssec chain downgrade attack prevention 10

• Upper bound in hours on how long
client can require server to continue
to send the extension.

• Denial of existence makes it possible
for server to discontinue DANE or
even DNSSEC signing of its zone. The
pin only requires continued extension
support. TLSA use can be abandoned
at any time and extension pin set to
00 00.

• Allows TLS server experimentation without
commitment

• Can be discussed in TLS WG, but 1h–65535h PIN
time would be enough
• Pinning less then 1h makes no real sense due

to DNS TTLs.
• 65535h is ~7.5 years.

• Holds document to get this done
• Commits TLS WG to define the two bytes in

updated document ASAP to avoid needless delay

4. Two byte TLS extension pin TTL (in hours)
Add two bytes

tls dnssec chain downgrade attack prevention 11

• Reserved now, defined in a separate update RFC
• Zero (length) means "TLS client MUST NOT pin extension”.

• Clients that implement only this RFC free to treat all values as “do not pin”
• Supports TLS server experimentation without commitment
• More flexibility in format of extension pinning in Update RFC (but ultimately, probably 0

or 2 bytes)
• One byte less for this RFC when update RFC not used, and one more when it is.

5. Variable-length (0..255) Reserved Field

tls dnssec chain downgrade attack prevention 12

• Complicated nested meta extension field
• Empty means "TLS client MUST NOT pin extension”
• Otherwise under-specified, unless client signals support for each nested extension, but then

why nest???
• So this is just additional extensions in disguise, no obvious benefit from nesting
• Supports TLS server experimentation without commitment
• Supports gradually introduced tweaks, but that can be done later also (if proves necessary) to

complement the minimal reserved fields
• Fancy way of saying “do nothing” or “fix everything in new TLS extension”

6. Extension block

tls dnssec chain downgrade attack prevention 13

• One or two byte cosmetics vs accept known downgrade attack
• One or two byte cosmetics vs reduce scope to only DNS-over-TLS
• Possible (unlikely) replacing draft vs guaranteed replacing of draft with -bis
• Preventing DANE deployment vs freedom to choose WebPKI and/or DANE  
 

• TLS != HTTPS
• Solution requested for planned support in openssl and postfix

Summary notes

tls dnssec chain downgrade attack prevention 14

1. Do nothing
2. Fix everything in new TLS extension
3. Two zero bytes in this RFC, specify non-zero semantics in a separate update RFC
4. Two byte TLS extension pin TTL (in hours)
5. Variable-length (0..255) reserved field (default empty) in this RFC, syntax and semantics

in separate update RFC
6. Nested extension block (just like new TLS extension, but even more complicated)

Discussion

