TLS 1.3 Extension for Certificate-based Authentication with an External Pre-Shared Key

draft-housley-tls-tls13-cert-with-extern-psk

Russ Housley
TLS WG at IETF 102
July 2018

TLS 1.3 Authentication and Key Schedule

Initial Handshake:

Authentication: Key Schedule Secret Inputs:

Signature and Certificate (EC)DHE

Subsequent Handshake:

Authentication: Key Schedule Secret Inputs:

Resumption PSK + (EC)DHE

Resumption PSK (EC)DHE

This Extension Adds Another Choice

Initial Handshake:

Authentication: Key Schedule Secret Inputs:

Signature and Certificate (EC)DHE

Signature and Certificate External PSK + (EC)DHE

Subsequent Handshake:

Authentication: Key Schedule Secret Inputs:

Resumption PSK + (EC)DHE

Resumption PSK (EC)DHE

External PSK for Quantum Protection

- Open question whether a large-scale quantum computer is feasible, and if so, when it might happen
- If it happens, (EC)DHE becomes vulnerable
- The concern ...
 - Today: Adversary saves TLS 1.3 handshake and the associated ciphertext
 - Someday: Decrypt communications when a large-scale quantum computer becomes available
- The solutions ...
 - Near-term: Strong external PSK as an input to the TLS 1.3 key schedule
 - Long-term: Quantum-resistant public-key cryptographic algorithms (the winners of NIST competition)

Extension Overview

```
Client
                                                     Server
ClientHello
+ tls cert with extern psk
+ supported groups*
+ key share
+ signature algorithms*
+ psk key exchange modes(psk dhe ke)
+ pre shared key
                           ---->
                                                  ServerHello
                                  + tls cert with extern psk
                                                  + key share
                                             + pre shared key
                                      + {EncryptedExtensions}
                                        {CertificateRequest*}
                                                {Certificate}
                                          {CertificateVerify}
                                                   {Finished}
{Certificate*}
{CertificateVerify*}
{Finished}
[Application Data]
                           <---->
                                         [Application Data]
```

Extension Syntax

- The successful negotiation of the "tls_cert_with_extern_psk" extension requires the TLS 1.3 key schedule processing to include both the selected external PSK and the (EC)DHE shared secret value; it also requires the server to send the Certificate and CertificateVerify messages in the handshake
- The "tls_cert_with_extern_psk" extension is always be used along with the already defined "key_share", "psk_key_exchange_modes", and "pre_shared_key" extensions
- The "psk_key_exchange_modes" extension will always offer psk_dhe_ke
- The "pre_shared_key" extension used with obfuscated_ticket_age of zero
- Inclusion of the extension is willingness to authenticate the server with a certificate and include an external PSK in the key schedule processing:

```
struct {
    select (Handshake.msg_type) {
        case client_hello: Empty;
        case server_hello: Empty;
    };
} CertWithExternPSK;
```

Allow Certificates with External PSK

- TLS 1.3 does not permit the server to send a
 CertificateRequest message when a PSK is being used;
 this restriction is removed when the
 "tls_cert_with_extern_psk" extension is negotiated
 - Allows external PSK, and
 - Allow client and server authentication with certificates
- TLS 1.3 does not permit an external PSK to be used in the same fashion as a resumption PSK; this extension does not alter those restrictions
- Likewise, a certificate still MUST NOT be used with a resumption PSK

A Few Thoughts About External PSKs

- Group external PSKs must be distributed in a manner that does not depend on current public key cryptography
- Pairwise external PSKs for every client and server is not feasible
- A group, such as an enterprise or organization, can manage an external PSK
 - Invention of a large-scale quantum computer means that the group members might be able to perform decryption
 - Parties outside the group remain unable to decrypt
- External PSKs are more suitable for some applications of TLS 1.3 than others

The Ask

 TLS WG adopt the Internet-Draft: draft-housley-tls-tls13-cert-with-extern-psk

Review and comment on the Internet-Draft