
Discovering PREF64 in Router Advertisements

draft-pref64folks-6man-ra-pref64-02

L. Colitti, E. Kline, J. Linkova

https://tools.ietf.org/html/draft-pref64folks-6man-ra-pref64

Use Case
How to discover NAT64 prefix for address
synthesis

● Validating stub resolvers
● IPv4 literals
● 464XLAT

Why RA Option?

● All L3 Network stack config on a host in a single packet
● Atomic: no state when config is incomplete
● Network *is* the authoritative source of information
● No additional services required
● Secured by RA guard
● No “trust DNS response to be able to use DNSSEC”

paradox

Option Format

Multiple Prefixes

Multiple Prefixes

One option specifies one prefix only

An RA might contain multiple Pref64 options

Use Case: migrating from one Pref64 to another

Multiple Prefixes Scenarios

1: Different prefixes learnt via different mechanisms

2: Multiple prefixes received in a single RA

3: Multiple prefixes received in multiple RAs (on one or
multiple interfaces)

Scenarios #1 & #2

Different prefixes learnt via different mechanisms

Recommended order

1. RFC7225 (if supported)
2. RA Option
3. RFC7050 (DNS-based discovery; widely supported)

Multiple prefixes received in a single RAs

SHOULD follow guidance in RFC7050 (use all prefixes)

Scenario #3: Multihoming
Multiple prefixes received in multiple RAs (on one or
multiple interfaces)

Pref64 is specific to the network it’s received on

 Multihomed hosts need to be mPVD-aware

This is already true today

Limitations

One Prefix for All Destinations

● Workaround: use more-specific routes in network

○ 10.0.0.0/8 -> 64:ff9b::10.0.0.0/104

● Support would increase implementation complexity, risk

of bugs

● Not supported by RFC7050 either

No Ability to Exclude Prefixes from Synthesis
● Not useful on an IPv6-only network

○ If host gets an A record, it can’t do much with it

○ If app knows pref64 and really cares about the A,

it can trivially reverse address synthesis

○ Private IPv4 MUST NOT be translated with WKP

● Not supported by RFC7050 or RFC7225* either

* Theoretically you could do 0.0.0.0/1, 128.0.0.0/2, 160.0.0.0/4, … until you hit packet size limits. Should you?

Only Supports /96 pref64
● Other prefix lengths not [widely? at all?] implemented

● Supporting other prefix lengths would use an additional
8 bytes in RA

● Can always define another option in the future

Call for Adoption?

