
OSCORE Profile of ACE
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-05

Francesca Palombini, Ericsson AB
Ludwig Seitz, RISE SICS AB
Göran Selander, Ericsson

Martin Gunnarsson, RISE SICS AB

https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-05

Status

• Update -05 according to review

• WGLC review comments from Jim - PR #9 included in -05 fixes most of them:
• Take out EDHOC appendix
• Change term "MitM" with "on-path attacker”
• Add section on discarding the sec ctx
• Change uniqueness requirement on IDs
• Define structure to transport OSCORE sec ctx input parameters
• Remove uri path from the document
• Motivate use of nonce in Protocol overview

• One open point discussed here

IETF 103 | Bangkok | ACE WG | 2018-11-08 1

https://github.com/ace-wg/ace-oscore-profile/pull/9
https://github.com/ace-wg/ace-oscore-profile/issues/8
https://github.com/ace-wg/ace-oscore-profile/issues/7
https://github.com/ace-wg/ace-oscore-profile/issues/6
https://github.com/ace-wg/ace-oscore-profile/issues/6
https://github.com/ace-wg/ace-oscore-profile/issues/5
https://github.com/ace-wg/ace-oscore-profile/issues/4
https://github.com/ace-wg/ace-oscore-profile/issues/3
https://github.com/ace-wg/ace-oscore-profile/issues/2

Add section on discarding the sec ctx

• The client MUST discard the current security context associated with
an RS when:
• the Sequence Number space ends.
• the access token associated with the context expires.
• the client receives a number of 4.01 Unauthorized responses to OSCORE

requests. The exact number needs to be specified by the application.
• creating a new security context from an old non-expired token

• The RS MUST discard the current security context associated with a
client when:
• Sequence Number space ends.
• Access token associated with the context expires.

IETF 103 | Bangkok | ACE WG | 2018-11-08 2

https://github.com/ace-wg/ace-oscore-profile/issues/6

Define structure to transport OSCORE sec ctx
input parameters

IETF 103 | Bangkok | ACE WG | 2018-11-08 3

• CDDL definition for
OSCORE_Security_Context (CBOR):

OSCORE_Security_Context = {
? 1 => bstr, ; ms
? 2 => bstr, ; clientId
? 3 => bstr, ; serverId
? 4 => tstr / int, ; hkdf
? 5 => tstr / int, ; alg
? 6 => bstr, ; salt
? 7 => bstr / tstr ; rpl }

• Example of OSCORE_Security_Context
using JSON:

• "OSCORE_Security_Context" : {
"alg" : "AES-CCM-16-64-128",
"clientId" : b64'qA’,
"serverId" : b64'Qg’,
"ms" : b64'+a+Dg2jjU+eIiOFCa9lObw’
}

• IANA considerations: registry creation (Expert Review Required), parameters
registration, CWT and JWT registration, expert review guidelines

https://github.com/ace-wg/ace-oscore-profile/issues/4

The one issue left

• Assumptions:

• Client and RS can forget security contexts and do not keep track of
all the tokens received.

• Client can get an old non-expired token from AS.

IETF 103 | Bangkok | ACE WG | 2018-11-08 4

Background

IETF 103 | Bangkok | ACE WG | 2018-11-08 5

Protocol Overview from v-02 (June 2018)

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx
Derivation

Sec Ctx
Derivation

2.01 Created

OSCORE Request

OSCORE Response

Proposal

IETF 103 | Bangkok | ACE WG | 2018-11-08 6

Adding random Nonces N1 and N2 in Sec Ctx
derivation (Created by RS and C resp)

• Sender Key

• Receiver Key

• Base IV

• Partial IV =
Sequence

Number

(starts at 0)

• Master Secret

• Master Salt

• Client ID

• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx

Derivation

(N1, N2)

Sec Ctx

Derivation

(N1, N2)

2.01 Created
(Nonce N1)

OSCORE Request
(Nonces N2)

OSCORE Response

This will avoid reuse of nonces and keys on RS and C for a security context
derived from the same input parameter

Motivation: N1 (RS nonce)

• Issue:
• RS looses security context and token
• C reposts the same token, triggering security context derivation
• Attacker replays an old OSCORE Request from C to RS

• This leads to reuse of nonces on the server side

• RS sends a random nonce N1 to avoid this.

IETF 103 | Bangkok | ACE WG | 2018-11-08 7

Issue

IETF 103 | Bangkok | ACE WG | 2018-11-08 8

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C AttackerRS

POST /authz-info

Sec Ctx
Derivation

2.01 Created

OSCORE Request
AEAD Nonce = A

OSCORE Response (uses AEAD nonce from request)

OSCORE Request

4.01 Unauth

This will cause reuse of AEAD nonces and keys on the RS for a different message for
a security context derived from the same input parameter

OSCORE Request
AEAD nonce = A

OSCORE Response
(uses AEAD nonce from request)

Looses Security Context

Solution

IETF 103 | Bangkok | ACE WG | 2018-11-08 9

Adding a random Nonce N1 in Sec Ctx derivation
(Created by RS)

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx
Derivation

(N1)

Sec Ctx
Derivation

(N1)

2.01 Created
(Nonce N1)

OSCORE Request

OSCORE Response

This will avoid reuse of nonces and keys on RS for a security context derived
from the same input parameter

Motivation: N2 (C nonce)

• Issue:
• C looses security context and token
• C gets a token, and posts it to RS
• An on-path attacker replays an old message from RS to C, containing an old

nonce N1 for security context derivation

• This leads to reuse of nonces on the client side

IETF 103 | Bangkok | ACE WG | 2018-11-08 10

Issue

IETF 103 | Bangkok | ACE WG | 2018-11-08 11

Nonce N1 is not protected so an on-path attacker can replace it,
provoking an old security context to be created on the Client, and
nonces reuse

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx
Derivation

(N1)

Sec Ctx
Derivation

(N2)

2.01 Created
(Nonce N1)

OSCORE Request
AEAD Nonce = A

4.01 Unauthorized

Attacker

2.01
(N2)

OSCORE Request
AEAD Nonce = A

OSCORE Response

Uses Security Context
created witjh Nonce N1

Looses Security Context

Conclusion

• Because of these security issues, we consider that using nonces can not be
optional.

• Question to the WG: how do we transport N1 and N2 and include them in
OSCORE Security Context derivation?
• N1 || N2 as ID Context; transported as kid context (currently in the draft)
• N1 as salt, N2 as ID Context; N1 transported as payload of 2.01 Created, N2 as

kid context
• N1 || N2 as ID Context; N2 transported at the same time of the token in the

POST /authz-info (new content-format), N1 transported as payload of 2.01
Created

IETF 103 | Bangkok | ACE WG | 2018-11-08 12

Proposal 1: N1 || N2 as kid context

IETF 103 | Bangkok | ACE WG | 2018-11-08 13

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx
Derivation
(N1, N2)

Sec Ctx
Derivation
(N1, N2)

2.01 Created
payload = N1

OSCORE Request
kid context = N1 || N2

OSCORE Response

• ID Context = N1 || N2 is used in
Security Context derivation

• kid context to transport ID Context in
the first OSCORE request

• kid context can be omitted in further
OSCORE requests

• Con: RS derives a sec context when
receiving an unknown kid context; we
send N1 when only N2 is needed.

• Pro: we don’t use salt, leaving it to the
application

• ID Context = N1 || N2

Proposal 2: N1 as salt, N2 as ID Context

• Salt = N1 is used in Security Context
derivation

• ID Context = N2 is used in Security
Context derivation

• kid context to transport ID Context in
the first OSCORE request, salt is
transported as payload of 2.01 Created

• kid context can be omitted in further
OSCORE requests

• Pro: we send N2 only
• Con: we use salt

IETF 103 | Bangkok | ACE WG | 2018-11-08 14

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS

POST /token

Access token + RS Information

POST /authz-info

Sec Ctx
Derivation
(N1, N2)

Sec Ctx
Derivation
(N1, N2)

2.01 Created
payload = N1

OSCORE Request
kid context = N2

OSCORE Response

• Salt = N1
• ID Context = N2

Proposal 3: N1 || N2 as ID Context
• ID Context = N1 || N2 is used in Security Context

derivation
• N1 transported as payload of 2.01 Created

• N2 transported together with the token

• Pro: cleaner, don’t send nonces in OSCORE
message

• Con: Changes in Ace for POST /authz-info:
• Allow use of Content-Format: application/ace+cbor

together with CBOR map as payload (which MUST
contain token)

IETF 103 | Bangkok | ACE WG | 2018-11-08 15

• Sender Key
• Receiver Key
• Base IV
• Partial IV =

Sequence
Number
(starts at 0)

• Master Secret
• Master Salt
• Client ID
• Sender ID

C ASRS
POST /token

Access token + RS Information

POST /authz-info
payload = token, N2

Sec Ctx
Derivation
(N1, N2)

Sec Ctx
Derivation
(N1, N2)

2.01 Created
payload = N1

OSCORE Request

OSCORE Response

• ID Context = N1 || N2
Header: POST (T=CON, Code=0.02)

Uri-Path: "authz-info"
Content-Format:

"application/ace+cbor"
Payload: {

“access_token” : Token,
“nonce”: N2 }

Last Question

• Should we use Content-Format: “application/ace+cbor” for 2.01
Created and use the registered parameter “nonce” to send N1?

IETF 103 | Bangkok | ACE WG | 2018-11-08 16

