DetNet Packet Loss and Delay Perfor mance Measurement

draft-chen-detnet-loss-delay-00

Authors

Mach Chen

Andrew G. Malis

Motivation

- DetNet is defined to provide end-to-end bounded latency and extremely low pack et loss rates for critical flows.
- It's important to measure and monitor the packet loss rates and end-to-end delay and delay variation of a DetNet flow path, which allows evaluation of whether the Service Level Agreements (SLA) of the provided DetNet services are satisfied.
- These metrics are also useful in network/traffic planning, trouble shooting, and ne twork performance evaluation.
- Passive performance measurement does not affect the behavior of the real DetN et service, and can provide more accurate measurement results than active PM.
- This document defines protocol mechanisms to support Passive PM for DetNet s ervices.

d-CW based PM

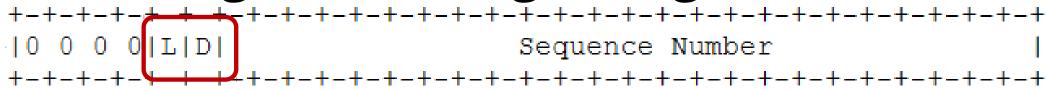
- MPLS-based encapsulation introduces the DetNet service layer that makes it possible to implement Passive PM for DetNet services, where
 - The Service Label (S-Label) is used for flow identification
 - The Sequence Number in d-CW is used for packet counting/timestamping, and counts/timestamp correlation
 - No extra packets injected, the performance of the DetNet services will not be affected

Loss Measurement

- To measure the number of packets transmitted at the ingress node but not receiv ed at the egress node B within a measurement interval, there needs a way to determine which packets belong to which measurement interval.
- The measurement interval number is calculated as the modulo of the sequence n umber and a pre-configured constant.
 - Measurement Interval = "Sequence Number" mod "Pre-configured constant".

• Then:

- Packet Loss[n] = A_TxP[n] B_RxP[n], where:
- The "n" is the measurement interval,
- The A_TxP[n] is the number of packets transmitted at the ingress node;
- The B_RxP[n] is the number of packets received at the egress node;
- The A_TxPs and B_RxPs are communicated through RFC6374 LM message;


Delay Measurement

 Since each packet will carry a Sequence Number, it will be used for cor relation between the timestamps collected from the ingress node and the timestamps collected from the egress node;

• Then:

- Packet Delay[n] = B_RxT[n] A_TxT[n], where:
- The "n" is the sequence number;
- The B_RxT[n] is the timestamp of the No. "n" packet when received at the egr ess node;
- The A_TxT[n] is the timestamp of the No. "no" packet when sent at the ingres s node;

Embedded DM/LM Indication or Out-of-b and Configuration/Signaling?

- Embedded DM/LM indication
 - Allocate two bits (D bit and L bit) from the Sequence Number space, indicate whether LM and /or DM are enabled;
 - L bit: Loss Measurement Indicator, set at the ingress, notify the Measurement Points (MPs) to count this packet;
 - D bit: Delay Measurement Indicator, set at the ingress, notify the MPs to timestamp this pack et;
 - The D bit can be optional, the L bit is more desired;
- Alternative solutions (Out-of-band)
 - DetNet configuration model, or
 - PCEP extension, or
 - Command Line Interface (CLI).
 - The MPs may take more time and use more complex way to determine whether a packet should be e counted, or whether a packet should be timestamped (depends on implementation).

Lou's Math on Sequence Number Space

Bits Needed	$\frac{1}{2}$						
	64 BPkt	128 BPkt	256 BPkt	512 BPkt	1514 BPkt	4096 BPkt	9216 BPkt
10M	14	13	12	11	10	8	7
1G	21	20	19	18	16	15	14
100G	27	26	25	24	23	22	20
400G	29	28	27	26	25	24	22
1T	30	30	29	28	26	25	24

- Given the packet size of 1.5K, 26 bits looks sufficient for all flows to hold 1 sec tra ffic.
 - Considering large flow normally means large packets
- Can we squeeze out one or two bits for DetNet OAM?

Extensions to RFC6374

- New TLVs to RFC6374 LM and DM messages
 - Measurement Interval TLV
 - Carry the Measurement Interval in the LM message, when perform packet loss measure ment
 - DetNet control word TLV
 - Carry the d-CW in the DM message, when perform packet delay measurement
 - Service Label TLV
 - Can be carried in both LM and DM message, for identifying the measured DetNet flow.

Next Steps

- Ask opinions from the WG regarding to the DM/LM indication
 - Embedded or out-of-band?
- Solicit more reviews/comments, refine the draft accordingly.

Thanks