
Software-Defined	Networking	
(SDN)-based	IPsec	Flow	Protection
(draft-ietf-i2nsf-sdn-ipsec-flow-protection-03)

Presenter:	Gabriel	López-Millán
Rafael	Marín-López
(University	of	Murcia)

1



SDN-based	IPsec

• Architecture for	the	SDN-based	IPsec	management	to	centralize	the	
establishment	and	management	of	IPsec	security	associations	

• We	describe	two	cases
– Case	1:	When	IKEv2	is	in	the	NSF	
– Case	2:	When	the	NSF	does	not	implement	IKEv2	

• Goal:	To	define	the	NSF	facing	interfaces	required	to	
manage	and	monitor	the	IPsec	SAs	in	the	NSF	from	a	SC.		
– Case	1)		SC	provides	the	NSF	with	information	to	IKE,	SPD	and	PAD	and	can	

collect	state	data	about	IKEv2	and	SAD		(IPsec	SAs)
– Case	2)		SC	provides	the	NSF	with	valid	entries	in	the	SPD	and	SAD	and	can	

collect	state	about	about	SAD	(IPsec	SAs)

• Definition	of	YANG	models	for	IKEv2,	SPD,	SAD	and	PAD
2



YANG	model
• The model is based on RFC	4301,	RFC	7296	(IKEv2).	We
have also included some information observed in	
XFRM	API.

• Case	1:
– IKEv2:	it allows to	send phase 1	info but phase 2	info is
collected from the other containers (PAD,	SPD)

– PAD:	it has	not changed from previous versions.
– SPD:	to	include IPsec policies and	read some state date
– SAD:	to	collect state data	

• Case	2:
– SPD:	to	include IPsec policies and	collect state data
– SAD:	to	configure	and	collect state date	about IPsec SAs

3



Update	(Changes	in	ietf-…-02)

• New	update	in	section	9.	Security	Considerations
– Emphasize	the	necessity	of	a	security	association	between	
the	SC	and	the	NSFs,	…

– …	and	the	SC	SHOULD	never	store	neither	authentication	
(case	1)	nor	integrity/encryption	(case	2)	key	material

– Improve	description	of	security	consideration	for	case	2

• YANG	model
– IKEv2	model:	

• bool	variable	INITIAL_CONTACT	for	IKEv2	model
• SAD	lifetime	that	should	be	applied	to	IPsec	SAs	in	SPD

– ipsec-sad-lifetime-hard
– Ipsec-sad-lifetime-soft

4



Implementation
• We	have	a	NSF	implementation:

– Source	code:	https://gitlab.atica.um.es/gabilm.um.es/cfgipsec2
– Based	on	NETCONF/YANG	(sysrepo/netopeer2)
– Case	1:	IKEv2	(Strongswan),	Case	2:	Ubuntu	(pfkey_v2)
– We	have	been	able	to	test:

• Basic	conf.	cases	1	and	2	/	host-2-host	and	gw-2-gw	scenarios
• Rekey	mechanism	described	in	the	draft	document

- SC	based	on	the	netopeer-cli>	command	line	tool	(XML	conf.	examples)
– Testing:	https://gitlab.atica.um.es/gabilm.um.es/sysrepo-netopeer2-

cfgipsec2

• Security	controller	side:
– ODL	and	ONOS	explored.	We	have	been	be	able	to	configure	NSFs	with	

both	controllers.	But	it	still	needs	a	lot	work.
– We	are	working	in	a	python-based	implementation

5



Next	Steps
• We	think	the	document	is	ready	for	the	WGLC.
• At	implementation	level:

– Continue	the	work	in	the	controller	side.	We	need	to	
complete	an	autonomous	scenario.	We	would	appreciate	
collaboration	in	this	side.

– Implement	the	complete	model	and	test	advanced	scenarios

6



Software-Defined	Networking	
(SDN)-based	IPsec	Flow	Protection
(draft-ietf-i2nsf-sdn-ipsec-flow-protection-03)

Presenter:	Gabriel	López-Millán
Rafael	Marín-López
(University	of	Murcia)

7



Rekey

• Case	1:	
– IKEv2	in	the	NSF	can	control	rekey	based	on	the	lifetime	associated	to	

each	IPsec	SA.

• Case	2:
1. The	SC	chooses	two	random	values	as	SPI	for	the	new	inbound	SAs:	for	

example,	SPIa2	for	A	and	SPIb2	for	B.		These	numbers	MUST	not	be	in	conflict	
with	any	IPsec	SA	in	A	or	B.	Then,	the	SC	creates	an	inbound	SA	with	SPIa2	in	A	
and	another	inbound	SA	in	B	with	SPIb2	in	the	NSF	A	and	B	respectively.		It	can	
send	this	information	simultaneously	to	A	and	B.

2. Once	the	Security	Controller	receives	confirmation	from	A	and	B,	inbound	SA	
are	correctly	installed.		Then	it	proceeds	to	send	in	parallel	to	A	and	B	the	
outbound	SAs:	it	sends	the	outbound	SA	to	A	with	SPIb2	and	the	outbound	SA	
to	B	with	SPIa2.		At	this	point	the	new	IPsec	SAs	are	ready.

3. The	Security	Controller	deletes	the	old	IPsec	SAs	from	A	(inbound	SPIa1	and	
outbound	SPIb1)	and	B	(outbound	SPIa1	and	inbound	SPIb1)	in	parallel.

8


