

SOCKS Protocol Version 6
(update)

draft-olteanu-intarea-socks-6-05

Vladimir Olteanu

New in -05
● Different handling of first bytes of application

data
● Reverse TCP proxy: can now handle concurrent

incoming connections to the same port
● UDP behaviour revamped

False start
● Simple core state

machine

Request

Auth. Reply
+ (Yes / No)

Op. Reply
+ (Success / Failure)

False start
● Simple core state

machine
● Proxy can’t

complicate it unless
client asks for it

Request
+ Auth. Method opt.

Auth. Reply
+ (Yes / No / Do authentication)

(“Long”) Authentication

Auth. Reply
+ (Yes / No)

Op. Reply
+ (Success / Failure)

False start
● Send application data ASAP

– Just make sure not to break the state machine

● Right after Request, if unwilling to do “long” authentication
● Right after Authentication Reply, if 0-RTT authentication

succeeds
● Right after last message in authentication sequence, otherwise

Initial data
● Serves no purpose unless “long” authentication is

performed
● “Initial Data Length” field moved

– Request → Authentication Method option

● Capped at 16K
● Can no longer be dropped by proxy

– Removed “Initial Data Offset” field from Operation Reply

Handling TFO
● Added “Payload Length Field” to TFO Option
● Preserve TFO semantics

– Data in TFO payload has weaker guarantees

● Ensure good timing in certain corner cases
– Payload should be big enough to elicit a data

response

TFO corner case: fragmented payload
Request + GET /index.h

SYN + ACK

Client ServerProxy

GET /index.h

Low RTT High RTT

TFO corner case: fragmented payload
Request + GET /index.h

SYN + ACK

Client ServerProxy

tml HTTP/1.1

GET /index.h

Low RTT High RTT

TFO corner case: fragmented payload
Request + GET /index.h

SYN + ACK

Client ServerProxy

tml HTTP/1.1

GET /index.h

SYN + ACK

tml HTTP/1.1

Low RTT High RTT

TFO corner case: fragmented payload
Request + GET /index.h

SYN + ACK

Client ServerProxy

tml HTTP/1.1

GET /index.h

SYN + ACK

tml HTTP/1.1

HTTP 200 OK
HTTP 200 OK

Low RTT High RTT

Using the correct TFO payload
Request + GET /index.h

SYN + ACK

Client ServerProxy

tml HTTP/1.1
GET /index.html HTTP/1.1

HTTP 200 OK

HTTP 200 OK

Low RTT High RTT

TCP Reverse Proxy
● The BIND command handles one incoming

connection
– listen(), accept() once and close() listening socket

● Want to emulate typical server behavior
– listen(), accept(), accept(), accept()…

Listen Backlog Option
● First BIND: include a Listen Backlog Option

– Prompts proxy to listen() for as long as connection is
open

● Each further BIND to same address+port
– Has the proxy accept() an incoming connection from the

same listen()ing socket

● Authenticated clients only

UDP Relay
● Revamped from v5
● DTLS support
● Firewall-friendly: same relay port for all clients

(1080 by default; DTLS port TBD)

UDP Relay
ProxyClient

Request: UDP ASSOC, bind addr+port

TCP UDP

Op. Reply: bind addr, port

Asoc. Init.: assoc. ID

● A UDP port is bound

● An Association ID is
generated for the
binding

UDP Relay
ProxyClient

Request: UDP ASSOC, bind addr+port

TCP UDP

Op. Reply: bind addr, port

Asoc. Init.: assoc. ID

UDP datagram

Asoc. Confirmation

● The first datagram
triggers an Association
Confirmation

● The assoc. ID is
mapped to the
UDP/DTLS
conversation

UDP Relay
ProxyClient

Request: UDP ASSOC, bind addr+port

TCP UDP

Op. Reply: bind addr, port

Asoc. Init.: assoc. ID

UDP datagram

Asoc. Confirmation

(UDP traffic) ● UDP traffic can pass in
both directions now

SOCKS Datagram Header
+---------------+-------------+------+---------+----------+
| Version | Association | Port | Address | Address |
| Major | Minor | ID | | Type | |
+-------+-------+-------------+------+---------+----------+
| 1 | 1 | 4 | 2 | 1 | Variable |
+-------+-------+-------------+------+---------+----------+

● Carried by all datagrams on client-proxy leg
● Contains address of remote host
● Association ID is used for multiplexing

Nits
● TOS Stack option (useful for UDP)
● All Idempotence options now either in Requests

or Authentication Replies
● Limited authentication phases to 1 (oversight)
● Removed TFO options from Operation Replies

(no use case)

Implementation
● Complies with -04

● Message library:
https://github.com/45G/libsocks6msg

● Utility library: https://github.com/45G/libsocks6util
● Proxyfier + proxy: https://github.com/45G/sixtysocks

https://github.com/45G/libsocks6msg
https://github.com/45G/libsocks6util
https://github.com/45G/sixtysocks

What’s next?
● SOCKS Sessions

– Killer use case: ToR (different session = different
circuit)

– Better granularity for idempotence and “multi”-bind
● Proxy holds state per session, rather than per user

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

