
Adapting Hierarchical Key
Derivation for Ephemeral

Signatures in MLS?
Nadim Kobeissi

INRIA Paris, NYU Paris

IETF 103 MLS Hackathon
November 5, 2018

HDK: General Idea

k + x = new private key.

[k]B + [x]B = new public key.

[k+x] corresponds to [k+x]B!

• B is a base point.

• k is a secret key.

• [k]B is a public key.

• x is a scalar.

2

HDKs are already used in Bitcoin…

3

But Ed25519 is not just scalar
multiplication…

• Unlike secp256k1, Ed25519 does a
bunch of hashing.

• A bunch of “bit clearing”, “clamping”,

Khovratovich and Law show ways around
that in their paper:

BIP32-Ed25519: Hierarchical
Deterministic Keys over a Non-linear
Keyspace

Dmitry Khovratovich, Jason Law

4

HDK Trees (simplified)

5

[k]B

ZL, ZR ← HKDF(x, [k]B, 1)

(k, x) ← HKDF(w, sid)

Private key: k + ZL

Public key: [k]B + [ZL]B
ZL, ZR ← HKDF(x, [k]B, …) ZL, ZR ← HKDF(x, [k]B, 232-1)

ZL, ZR ← HKDF(ZR, [k]B, 1)Root key

Child key

Hardened child key
STOP

Potential applications to MLS

6

• Currently in MLS, there is one signature key (identity key) per user for all of
their conversations, always.

• HDK allows us to compartmentalize signature keys per conversation/epoch
etc. without additional key exchange.

• Improvements are clear for partial state compromise.

• But what are the improvements in the case of full state compromise?

Signal Desktop key management

7

All the keys

WhatsApp Desktop key management

8

No keys

MLS Desktop key management

9

HDK roots for
active

conversations only

10

To what demarcation of state
compromise can we generalize
these improvements?

