
Version Negotiation
QUIC, IETF 103, November 2018

Martin Thomson



Problem

2

SC

Initial

Version Negotiation (A, B)

Initial

Retry

Initial

Initial + Handshake (A, B, C)

Deploy 
New 

Version
C



Problem

3

SC

Initial

Version Negotiation (A, B)

Initial

Retry

Initial

Initial + Handshake (A, B, C)

Deploy 
New 

Version
C

No 
Connection 
State Kept



Problem

4

SC

Initial

Version Negotiation (A, B)

Initial

Retry

Initial

Initial + Handshake (A, B, C)

Deploy 
New 

Version
C

No 
Connection 
State Kept



The client never has this problem

The client always has state for a connection

Client transport parameters include final version choice

… plus something to authenticate version negotiation

The server validates versions

Servers allow for versions that are in flux when validating

e.g., allow either “A, B” or “A, B, C” while C is rolling out

Fix

5



Fix

6

SC

Initial (V=X, VN=)

Version Negotiation (A, B)

Initial (V=B, VN=<VN>)

Initial + Handshake

Deploy 
New 

Version
C

seems 
legit



How to Authenticate Version Negotiation packets

A. Send a copy of the packet
B. Send a hash of the packet
C. Send a list of versions disabled as a result

Assertion: these are functionally equivalent

A copy might be big-ish

Hashes capture order, which we don’t care about

Hashes capture greasing versions, confounding validation

Proposal: C

7



Validating Version Negotiation

8

SC

Initial (V=Y, OK=X, Y, Z)

Version Negotiation (X)

Initial (V=X; OK=X; Bad=Y, Z)

CONNECTION_CLOSE

Hey, I 
support Z

A



Problem/Opportunity

9

Version Negotiation takes a round trip

Incentive for clients to pick a version that is widely deployed

As opposed to what they prefer most

Connections get stuck with old versions

Upgrading to a newer version next time possible with new 
signaling, but clients have to remember (see also tracking)

Alt-Svc/ALTSVC helps HTTP, but maybe not other protocols



Proposal

Client advertises all versions it supports

After version negotiation, client lists what it learned:

Could be the versions from the VN packet

...or the versions the client eliminated as a result of VN

Server can pick any “compatible” version to continue with

10



Compatible Upgrade

11

SC

Initial (V=X; OK=X, Y)

Initial + Handshake (V=Y)



“Compatible”

Loosely, B is compatible with A if the first packet from A can 
be used to continue with B

Generally, if a transform exists:

first_packetB = f(first_packetA)

... then B is compatible with A

The spec for B has to define any transforms to B

12



Validating Version Negotiation

13

SC

Initial (V=Y)

Version Negotiation (X)

Initial (V=X; OK=X; Bad=Y,Z)

Initial + Handshake (V=X)

OK, Y or Z 
isn’t 

supported



Why?

14

Deploying a final RFC version (0x1) will incur a latency 
penalty if the last draft (0xff000011) is widely deployed

Clients will offer (and get) the boring 0x1 version when we 
start deploying the fancy multipath-enabled 0x2 version

Multipath might not be widely deployed

And it might not be worth risking paying a round trip


