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The client never has this problem

The client always has state for a connection

Client transport parameters include final version choice

… plus something to authenticate version negotiation

The server validates versions

Servers allow for versions that are in flux when validating

e.g., allow either “A, B” or “A, B, C” while C is rolling out

Fix
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How to Authenticate Version Negotiation packets

A. Send a copy of the packet
B. Send a hash of the packet
C. Send a list of versions disabled as a result

Assertion: these are functionally equivalent

A copy might be big-ish

Hashes capture order, which we don’t care about

Hashes capture greasing versions, confounding validation

Proposal: C
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Validating Version Negotiation
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Problem/Opportunity
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Version Negotiation takes a round trip

Incentive for clients to pick a version that is widely deployed

As opposed to what they prefer most

Connections get stuck with old versions

Upgrading to a newer version next time possible with new 
signaling, but clients have to remember (see also tracking)

Alt-Svc/ALTSVC helps HTTP, but maybe not other protocols



Proposal

Client advertises all versions it supports

After version negotiation, client lists what it learned:

Could be the versions from the VN packet

...or the versions the client eliminated as a result of VN

Server can pick any “compatible” version to continue with
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Compatible Upgrade
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“Compatible”

Loosely, B is compatible with A if the first packet from A can 
be used to continue with B

Generally, if a transform exists:

first_packetB = f(first_packetA)

... then B is compatible with A

The spec for B has to define any transforms to B
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Validating Version Negotiation
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Why?
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Deploying a final RFC version (0x1) will incur a latency 
penalty if the last draft (0xff000011) is widely deployed

Clients will offer (and get) the boring 0x1 version when we 
start deploying the fancy multipath-enabled 0x2 version

Multipath might not be widely deployed

And it might not be worth risking paying a round trip


