RIFT Open Source s

mehitation
ns Lea terop_lesting

Status Upaate, Lesso

2k g

4

¥

RIFT open source implementation

* On GitHub: https://qgithub.com/brunorijsman/ritt-python

* Grew out of IETF 102 hackathon

* Original modest goal was to test the LIE FSM
» Work is continuing to become complete RIFT implementation

» Goals:
* Help get the RIFT specification to the point that it is clear and complete

* To be a reference RIFT implementation
 Current emphasis on debuggability, not performance
* Implemented in Python
* Extensive documentation: README.md
* Not associated with any vendor

S , o~

Getting started with RIFT-Python

https://github.com/brunorijsman/rift-python/blob/master/README.md
Routing In Fat Trees (RIFT)

This repository contains a Python implementation of the Routing In Fat Trees (RIFT) protocol specified in Internet Draft
(ID) draft-draft-rift-03

The code is currently still a work in progress (see Feature List below for the status).

Documentation

+ Featue Lis e |nstallation Instructions

e Installation Instructions <

e Command Line Options [] Sta rtu p | n Stru Ctio n S

e Command Line Interface (CLI)

e Logging

e Log Visualization

RIFT OpeniSource Implementationit SClate

Current status summary

Feature group Completeness estimate
Adjacencies I 5%

Zero touch provisioning (ZTP)
Flooding

Route calculation
Management interface
Development toolchain

Note: all estimates are a finger in the wind estimates
_Q.:**' oA ~ ——3 e -~

RIFT Oggﬁ Source Implerﬁent?ati‘ ate (Bruno

SR =

ijsman) %

ha

Current status: adjacencies

Exchange LIE packets IPv6 adjacencies

LIE finite state machine New multi-neighbor state
IPv4 adjacencies Interactions with BFD
Interoperability with vendor RIFT Security procedures (nonce)

RIFT Opeh Source Implementatidn e ste (BrunoRijsman) L 3
" pv B i ,J-. : -

S TR

Current status: Zero Touch Provisioning (ZTP)

Complete | Not Complets

ZTP finite state machine -
Automatic level determination
Interoperability with vendor RIFT

RIFT Open Source Implerﬁent%ti aite (BrunoRijsman)

S S

Current status: flooding

Complete | Not Complete

Exchange TIE / TIDE / TIRE packets
Node TIEs

Prefix TIEs

TIE database

TX/RTX/REQ / ACK queues
Flooding procedures

Flooding scope rules (N, S, EW)
South-bound default route origination
Honoring received overload bit
Interoperability with vendor RIFT

Efficient TIE propagation (w/o decode)
Positive disaggregation TIEs

Negative disaggregation TIEs
Key-value TIEs

External TIEs

Policy-guided prefixes

Setting sent overload bit

Clock comparison

.
U~

3 .wt‘ B

R smén), d
A

e ¥

Current status: route calculation

Complete | Not Complete

Routing Information Base (RIB)

Forwarding Information Base (FIB)
North-bound SPF

South-bound SPF

East-west forwarding

Positive disaggregation procedures
Negative disaggregation procedures
Optimized route calculation on leafs
Fabric bandwidth balancing

Label binding / segment routing

=

)y Upelaite (Bruno‘\'ijsma_ o A
= = - g ,, 4

Current status: management

Complete Not Complete

Configuration file Configuration commands 'SSH CLI client
Telnet CLI client Command history Command completion
Operational commands Command help YANG data models

Documentation
Multi-node topologies

Logging

Current status: development toolchain

Complete | Not Complets

Automated unit tests 100% code coverage
Automated system tests Wireshark dissector
Automated interop tests

Travis continuous integration (Cl)

Codecov code coverage (~ 80%)

Strict pylint

Finite state machine (FSM) framework

Visualization tool

=

RIFT Open Source ImplementationUpate (Bruno'Rijsman) - 3

Protocol issues discovered (and fixed)

 Multi-neighbor oscillation
« Connecting 3 RIFT nodes to a LAN causes traffic spike (LIEs)
* Two flavors: amplified and non-amplified
« Caused by “triggered loops” in the finite state machine
* Solution: new multi-neighbor state

* Flooding oscillations
* In stable topology, you should only see TIDEs, not TIREs or TIEs
« We observed persistent “oscillations” of TIRE and TIE messages
* Various variations of the problem observed
* Solution for now: tweak the flooding scope rules
« Considered for future: explicit flooding scope in TIE header

e Other minor issues (not discussed here)

Multi-neighbor scenario

Multi-point LAN is not supported by RIFT
But could happen by accident.
How does the protocol behave?

Multi-neighbor traffic explosion

® ® Wireshark - 10 Graphs - wireshark_pcapng_en0_20180811085257_XzCYJQ
Wireshark 10 Graphs: wireshark_pcapng_en0_20180811085257_XzCYJQ C onne Ct 3 no d es t o L AN o
(]

Traffic spikes to line rate
All LIE messages

900

750 -

600 -

450 -

Packets/s

300

150

L L 1 L L L | 1

-8 -4 0 4 8 12 16 20
Time (s)

Click to select packet 15 (1s = 10).

Name Display filter Color Style Y Axis Y Field Smoothing
All packets - Line Packets/s None
TCP errors tcp.analysis.flags . Bar Packets/s None
+ - h Mouse o drags | zooms Interval 1 sec Time of day Log scale Reset

Help Copy Close

w N Z@C’[-’Z&‘B v1

° . ° ° ° °
Transition| TIMER_TICK [DONE WAY] > SEND_LIE [! R} F[P. hkhder=packe I .U;;:;M;;: pcolPacket|
1Packet (h (le = ” TIPLE NI
Pyph BIE A HE HH [UPDATING C. -
END_LIE [ONE|WAY] > send_lie [No ® - .
1Packet ARHIEHR 1 ATING CLIEN [Pash NRTGH
@ Transition| TIMER_TICK [ONE_WAY] <] 2
TX LIE 1Packet (header=Pa ELVED o H i [COMPUTE__ - -
Transition| §END_LIE [ONE_WAY] > H IGHBOR_OFFEI ransitic
@ Push TIMER TICK ® [{Hsl NE TTER_HAL [U] TX LIE P:
MPUTATION_D(Transitic
e kX L 1Packet (h Al WAY] fl:caBOR OFF
@ Push LIE\RECEIVED mell 7.1 der=Packe olPacket (h IST_HAL [UEF
[\@ RX LIE ProtocolPac} EIVED ILD_DOWN_EX
y r4nsi RS [TWC VE I II o
@ Push LIE RECEIVED RX LIE Pro ii jMpUTATION_
@ Transition TIMER T] OFFER Push LIE_R ‘ ransition
p TX LIE ProtocolPac} & OFFER ransition
Transition SEND_LII IE_RECEIV ransition
[Push IGHB OFFER
b I L 1Packet IE_RECEIVED ‘ I ransition
@ Trangitign| LIE_RECEIVED [ONE_WA! it TIPLE-N _MEIGHBOR ‘ “| “‘ der=Packer
@ Transitipn| NEW NEIGHBOR [ONE_WA! O [MEPPPEEATH RSt [UPDATING i oleackat(h ‘I
@ TX LI 1Packet (header=Pa ® h Lt THE HAL ATING_CLI END_LIE [TW
Transiltfiop| $END_LIE [TWO_WAY] > © [ItHkp it 4dm i B [COMPUT ush NEIGHB(RX LIE P1
@ [Push NEIGHBOR_OFFER e ile IGHBOR OF Push LIE_
: = Transition
= 4 [ETTER HAL
@ Transition LIE_RECK {4 e TX LIE Pro off
@ Transition NEW_NEIC S B ’ MECTATION Transition | "' \ ONE_WAY] :
@ TX LIE ProtocolPac) il edrcEBOR OFFEI i i ‘!I!\“ \l\,ll\m HI\ | —
p Transition SEND_LIi LIE PrdtocolPacket i ST_HAL [UPDI |l| \ ||H I \H\I\|IIII|II\| ill\ |H com
p [Frapisitipn| WHIGHBOR OFFER [UPDATI h | RE¢EIVED i LD_DOWN_EXP: \ ‘ “ —
rransition NEIGHBOR_ RX LIE P ; MPUTATION_DI ue
1 t d 1 !
R (. Push LIE ransition 1 L wcanavets
s OFFER ransition 1 b Transitic
‘ransition ¥
p RX LIE ProtocolPac} - TX LIE P:
Push LIE_RECEIVED i IE_RECEIV R J “ Transitic
[] = T %
| OFFE! by i NEIGHE der=PacketH ‘ ‘
i " - v ? ||unl|m I ul |H\ e
I
I 1Packet ATING_CLIF
IE_RECET] ONE_WAY] > process_ w1 o — I olPacket (h [« ||1 \ |\| I H| !|H T _BEST OF
YEW_] IG?K:E ONE_WAY] > SEND_LIE ‘“‘ o I BIVED * Il I l\ll”l\ || Il H
=L g o N i ush NEIG! ® | [COMPUTE

Cause of multi-neighbor oscillation

X receives LIE from Y Each Cycl.e:
Event New Neighbor « Xreceives 1 LIE fromY

Action Multicast LIEto Y and z |* Xreceives 1 LIE from Z
« X multicasts 2 LIEs

1 « Each is received by both Y and Z
State State * Y sends 1 LIE, receives 2 LIEs from X

ONE WAY TWO WAY (and also 2 LIEs from Y)
e Zsends 1 LIE, receives 2 LIEs from X

(and also 2 LIEs from Y)
X receives LIE from Z « All actions triggers by packets

Event Multi-Neighbor * No timers involved
Action Multicast LIE to Y and Z

.:‘ 8 (Bruno Rij man)- :
e - * - % v

Cause of multi-neighbor oscillation

Exponential growth of number
of LIE messages

FSM oscillates as fast as it can,
not constrained by timer ticks

Each Cycle:

X receives 1 LIE from Y

X receives 1 LIE from Z

X multicasts 2 LIEs

Each is received by both Y and Z

Y sends 1 LIE, receives 2 LIEs from X
(and also 2 LIEs from Y)

Z sends 1 LIE, receives 2 LIEs from X
(and also 2 LIEs from Y)

All actions triggers by packets

No timers involved

Solution: new multi-neighbor state

X receives LIE from Y X receives LIE from Z
Event New Neighbor Event Multi-Neighbor

State State State

ONE WAY TWO WAY MULTI-NEIGHBOR

1

“Cool-down” timer expires

.

. 24-0ct-2018 1

T

(Bruno Rijsman)

e _

RIFT OpentSource Implementationtpd te

Flooding oscillation #1

Node 1
o I N | Y ot

TIDE | TIRE TIDE | TIRE TIDE | TIRE TIDE | TIRE TIDE | TIRE

TIE TIE TIE TIE TIE

South

Flooding oscillation #1 Step 1: Node 2 send TIE

Dir = North —
Originator = 2
Node 1 Type = Node
Level 1 ekt T Rt BattE S e e mmm e p e g TIE Nr = xxx
North T 1 T Seq Nr = yyy

Step 2: Node 1 sends TIRE
TIDE | TIRE TIDE‘\ TIRE TIDE | TIRE TIDE | TIR ACKs received TIE

N North:2:Node:xxx:yyy
T 1
™\ Step 3: Node 1 ds TIDE
TIE TIE TIE tep 3: Node 1 sends
Is missing TIE header:
Node 2 I
Level O -
South Step 4: Node 1 sends TIDE

Node 1 retransmits TIE
Back to step 1

Flooding oscillation #2

B

TIDE

Node 2 ;
Level 0 ittt
South

TIRE TIRE

TIRE

Flooding oscillation #2

Node 1

Level 1
North

Node 2
Level O

TIDE

Step 1: Node 1 send TIDE
Announces a TIE header:
North:1:Node:xxx:yyy

Step 2: Node 2 sends TIRE
Node 2 does not have TIE
Node 2 requests TIE

Step 3: Node 1 does NOT send TIE
The flooding scope rules don’t allow
node 1 to send the requested TIE

Step 4: Node 3 resends TIRE
Node 1 retransmits TIRE
Back to step 2

Solution for flooding oscillations

* The flooding scope rules are “sensitive”

* A tiny change in the rules can have unanticipated consequences
(e.g. oscillations)

* The rules for TIE flooding, TIDE contents, and TIRE contents must
be consistent (which much more non-trivial than one would guess)

* Solution for now: tweak the flooding scope rules
 Considered for future: explicit flooding scope in TIE header

 For more details see http://bit.ly/ritt-flooding-oscillations

RIET OpenSource lmplemehta’fion Update (Bruno Rijsman)

T . =

Interoperability testing

* Run RIFT-Vendor in one process (publicly available)
* Run RIFT-Python in another process

 Both use common “topology file”
* Specifies the topology of the complete “network under test”
* Specifies which nodes are run by RIFT-Vendor and which by RIFT-Python

* Interoperability testing is fully automated

 Run full suite of system tests
 For each system test, try all permutations of Vendor / Python nodes

» So far, successfully completed interop testing for:
» Adjacency establishment and automatic level determination

» Flooding (not automated yet)

S T

RIET OpenSource lmplemehta’fion :?'=~ 8 (Bruno Rijsman)-

Conclusions

* Open source RIFT-Python implementation has helped the draft
progress
» Editorial improvements
* Protocol improvements

* Interoperability testing at a very early stage has flushed out issues

* Visualization tool is essential to understand the protocol behavior

* Weekly RIFT calls are essential (the deep discussions happen here)
« Additional contributors (pull requests) for RIFT-Python are welcome

ey
e

R”:T OpegiSource |mp|emehta}tioh' o Jate

