£

draft-tiloca-6tisch-robust-scheduling-02

Authors: Marco Tiloca
Simon Duquennoy

Gianluca Dini

6TiSCH - IETF105 - Montreal 1

Recap

e Attack:
» Selectively jamming exact cells of the victim’s schedule
 Effective, stealthy, targeted and low-power

* Preventive solution:
 Efficient pseudo-random shuffling of cells, at each slotframe
 No communication overhead (only local computation)

e Resulting new schedule:
* Collision-free and consistent
e Unpredictable to the adversary

6TiSCH - IETF105 - Montreal

After IETF 104

* Reviews on the list
* Pascal, Tengfei, Michael — Thanks!

e More comments on the list
* Michael, Malisa

 Summary of updates
* Reviews have been addressed
 Clarifications and editorial improvements

6TiSCH - IETF105 - Montreal

Updates from -01 (1/2) 3y

* [Editorial — Tengfei]

* Clarifications on symbols used for equation

 [Informational — Michael]
 More on attack motivations (e.g., harm competitor’s network)

* [Fixed cost of shuffling]
* An array of N elements is shuffled with (N - 1) swaps —was N
* Slower growth of counters N_Cand N_S
* Aligned with modern Fisher-Yates version

6TiSCH - IETF105 - Montreal

Updates from -02 (2/2) 3y

e [Recommended use — Malisa]
* Not explicitly recommending anymore the time offset shuffling

* Still describing the pros & cons of doing or not doing it

e [Output example — Michael]
 New Appendix A — Full step-by-step execution on a single node (2 slotframes)
* Schedule encoding; exact shuffling with pseudo-random number generation
* Configuration: original schedule; permutation keys; permutation cipher
* Both time and channel offset are shuffled; show intermediate and final permuted schedule

 https://qgitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling/tree/master/test

6TiSCH - IETF105 - Montreal

.l.H:P'ES
Key management (1/2) L
Configuration = {
]] ? 2 : [+Link_Lavyer_ Key 1],
* Renewal of permutation keys with CoJP 8 wshonk Igenticten,
* Provide them again together with the network keys A
? TBD : [+Permutation_Key],

* New parameter in the CoJP Join Response message TED 4 DeribatLon. CIpHEE

}

Permutation_Key = (

. . key_wvalue : bstr
* Temporary misalignment (
» Different nodes may get the new keys at different point in times

 Risk of both old and new shuffling performed in the network (for a while)

 How/when switching to the new permutation keys?

6TiSCH - IETF105 - Montreal

Key management (2/2) 3y

* Possible way forward (input: Michael, Malisa)
* Add a new parameter ‘Permutation_Index’ in the CoJP Join response
* Act as unique identifier of the distributed permutation key set

* Incremented upon every renewal of the permutation keys

* Key switching
* Signal the new permutation key set in a EB, in a newly allocated IE value
* The EB is sent by the trusted 6LBR, and verifiable with the new network keys

 A6LN node able to verify the EB will also switch to the new permutation keys

6TiSCH - IETF105 - Montreal

Summary

e Addressed reviews and comments from IETF 104

* Main open point

* Switching to new permutation keys

WG adoption?

6TiSCH - IETF105 - Montreal

Thank you!
Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling

