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Recap

e Attack:
» Selectively jamming exact cells of the victim’s schedule
 Effective, stealthy, targeted and low-power

* Preventive solution:
 Efficient pseudo-random shuffling of cells, at each slotframe
 No communication overhead (only local computation)

e Resulting new schedule:
* Collision-free and consistent
e Unpredictable to the adversary
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After IETF 104

* Reviews on the list
* Pascal, Tengfei, Michael — Thanks!

e More comments on the list
* Michael, Malisa

 Summary of updates
* Reviews have been addressed
 Clarifications and editorial improvements
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Updates from -01 (1/2) 3y

* [Editorial — Tengfei]

* Clarifications on symbols used for equation

 [Informational — Michael]
 More on attack motivations (e.g., harm competitor’s network)

* [Fixed cost of shuffling]
* An array of N elements is shuffled with (N - 1) swaps —was N
* Slower growth of counters N_Cand N_S
* Aligned with modern Fisher-Yates version

6TiSCH - IETF105 - Montreal



Updates from -02 (2/2) 3y

e [Recommended use — Malisa]
* Not explicitly recommending anymore the time offset shuffling

* Still describing the pros & cons of doing or not doing it

e [Output example — Michael]
 New Appendix A — Full step-by-step execution on a single node (2 slotframes)
* Schedule encoding; exact shuffling with pseudo-random number generation
* Configuration: original schedule; permutation keys; permutation cipher
* Both time and channel offset are shuffled; show intermediate and final permuted schedule

 https://qgitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling/tree/master/test
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.l.H:P'ES
Key management (1/2) L
Configuration = {
] ] ? 2 : [ +Link_Lavyer_ Key 1],
* Renewal of permutation keys with CoJP 8 wshonk Igenticten,
* Provide them again together with the network keys A
? TBD : [ +Permutation_Key ],

* New parameter in the CoJP Join Response message TED 4 DeribatLon. CIpHEE

}

Permutation_Key = (

. . key_wvalue : bstr
* Temporary misalignment (
» Different nodes may get the new keys at different point in times

 Risk of both old and new shuffling performed in the network (for a while)

 How/when switching to the new permutation keys?
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Key management (2/2) 3y

* Possible way forward (input: Michael, Malisa)
* Add a new parameter ‘Permutation_Index’ in the CoJP Join response
* Act as unique identifier of the distributed permutation key set

* Incremented upon every renewal of the permutation keys

* Key switching
* Signal the new permutation key set in a EB, in a newly allocated IE value
* The EB is sent by the trusted 6LBR, and verifiable with the new network keys

 A6LN node able to verify the EB will also switch to the new permutation keys
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Summary

e Addressed reviews and comments from IETF 104

* Main open point

* Switching to new permutation keys

WG adoption?
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Thank you!
Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling
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