
2017-01-09: CBOR WG
• Concise Binary Object Representation  

Maintenance and Extensions

1. Standardize CDDL as a data definition language 
(May 2018 milestone, actual: August 2018)

2. Formal process: Take RFC 7049 to IETF STD level 
(October 2018 milestone)

3. (Maybe define a few more CBOR tags, as needed.)

 1

CDDL

 2

Draft-ietf-cbor-cddl-08  
➔ RFC 8610

2019-06-12

�3

✔
CD
DL

🎊🥂
🎉🎊🥂🎉

🎊🥂🎉
🎊🥂
🎉

🎊🥂🎉

Nach dem Spiel ist vor dem Spiel  
(After the game is before the game)

Next steps on CDDL

�4

Peeking post-1.0

• SUIT people tell us they’d now really like:

• Import function (here: for COSE)

• Namespace control (related to import)

• At some point, a module registry may make sense

• (For more ideas, see also IETF102 slides)

 5

IETF103

draft-bormann-cbor-cddl-
freezer

• Collected items that were not done for CDDL 1.0

• Can be thawed now

• What should we pick up?

• Let’s prioritize today

 6

Things that can be done on the
side (no new CDDL needed)

• .pcre

• Big-endian .bits

• .bitfield

 7

Alternative Representations (1)
 cddlj = ["cddl", +rule]
 rule = ["=" / "/=" / "//=", namep, type]
 namep = ["name", id] / ["gen", id, +id]
 id = text .regexp "[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"
 op = ".." / "..." /
 text .regexp "\\.[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"
 namea = ["name", id] / ["gen", id, +type]
 type = value / namea / ["op", op, type, type] /
 ["map", group] / ["ary", group] / ["tcho", 2*type] /
 ["unwrap", namea] / ["enum", group / namea] /
 ["prim", ?(0..7, ?uint)]
 group = ["mem", null/type, type] /
 ["rep", uint, uint/false, group] /
 ["seq", 2*group] / ["gcho", 2*group]
 value = ["number"/"text"/"bytes", text]

 8

Alternative Representations (2)
 labeled-values = {
 ? fritz: number,
 * label => value
 }
 label = text
 value = number
➔
["cddl",
 ["=",
 ["name", "labeled-values"],
 ["map",
 ["seq",
 ["rep", 0, 1, ["mem", ["text", "fritz"], ["name", "number"]]],
 ["rep", 0, false, ["mem", ["name", "label"], ["name", "value"]]]]]],
 ["=", ["name", "label"], ["name", "text"]],
 ["=", ["name", "value"], ["name", "number"]]]

 9

.bitfield
 Field = uint .bitfield Fieldbits

 Fieldbits = [

 flag1: [1, bool],

 val: [4, Vals],

 flag2: [1, bool],

]

 Vals = &(A: 0, B: 1, C: 2, D: 3)

 10

� uint and bytes

2. Base Language Features

• 2.1 Cuts (e.g., for whole map members)

• 3.1 computed literals (base = 400 a = base + 4)

• 3.2 tag-oriented literals — dt'2019-07-21T19:53Z'

• 3.3 regular expression literals

• 4 Embedded ABNF

 11

Larger projects (1)
• Co-occurrence constraints

• Predicates

• Pointers/Selectors

 session = { … timeout: uint, … }

 other-session = {

 timeout: uint .lt [somehow refer to session.timeout],

 }

 12

Larger projects (2)

• Module superstructure

• Namespacing

• Import/Export (relating to URIs?)

• Versioning

 13

Larger projects (2a)

• Variants

• Particularly: CBOR and JSON variants

 14

Larger projects (3)

• Augmentation

• Relationship to semantics, RDF, …

• Get real default values

• Add units and other metadata

 15

Should there be a CDDL
roadmap WG document?

• Could adopt something like -freezer as WG
document

• No intent to ever publish as an RFC
• But an “official” document with (at least a snapshot

of) directions that are moving towards consensus
• Document priorities

 16

CBOR (RFC 7049) bis
Concise Binary Object Representation

Carsten Bormann, 2019-03-27

 17

TODOs left from IETF104

 18

Levels of Errors #45
• (not) well-formed — CBOR Syntax

• Error: Not recoverable (outside diagnostic tools)
• See also Appendix C (pseudocode)

• (not) valid — CBOR Semantics
• Error: Presentable to the application in principle

• (not) expected —  
Application Syntax and Semantics

• This is often expressed in CDDL

 19

To do: strict (from 104)

• A strict decoder only accepts preferred encoding

• Again, this also has an application component

• Similar: deterministic-checking decoder

• Text about security miracles already toned down

 20

Note: strict mode ≠ validity
• Probably need better terminology here.

• Require-deterministic vs. require-valid

• The latter is hard to do for all tags

• UTF-8 validity is mostly fine

• Map validity can only be enforced at generic
decoder precision; needs application help anyway

 21

Tag validity (1)
• At IETF104, we discussed purely structural vs.

semantic validity conditions for tags

• Decided to move some non-essential tags to a
separate document to open them up for semantic
validity

• On further reflection, this sends the wrong message

• Don’t do that, then

 22

Tag validity (2)
• Stick with structural tag validity

• Mention that validity, as always, is ultimately an
application concept (#86)

• Encourage generic decoder implementations to
present structurally invalid tags as such to the
application

• Application can then always implement semantic
validity, if desired

 23

Tag validity: #92
• Some early tags cannot generally be processed by the

application: Tag 25, Tag 29 need to know the serialization order
• Some implementations preserve ordering even in maps, so

the application can process these tags
• Many don’t, so the generic decoder would have to process

these tags during decoding
• This limits interoperability to a subset of decoders

• Mention that these tags exist, discourage (SHOULD NOT)
creating more of these, but don’t outlaw between consenting
implementations

• Note that this is different from making applications depend on
map ordering, as this can be implemented by the decoder

 24

Tag validity: Embedded
CBOR (Tag 24)

• Tag 24 (Embedded CBOR) does not require anything
from the byte string for tag validity

• Tag 36 (Embedded MIME) does require valid MIME for
tag validity

• Suggestion from the interim: make Tag 24 require
wellformedness (not validity) for tag validity (#86)

• Maybe give some guidance for tag developers (#86):
Don’t overdo validity requirements, but do give generic
decoders a chance to do useful work

 25

Other validity Checking

• Make map validity checking mandatory? #63

• This might be the other dimension of “strictness”

 26

Newer Issues

 27

JSON-to-CBOR conversion (1)
• Fish sticks ➔ aquarium

• JSON numbers are not identified as integers or floats
separately; they are floats that can be integer (10, 10.0, 1e1)

• CBOR separates the worlds of integers and floats; conversion
needs to make a decision

• Floating point range is greater than base CBOR integer range:
Not all floats that appear as integer can be converted to 64-bit
integer

• But then, in I-JSON, everything above 53 bits is inexact anyway

 28

JSON-to-CBOR conversion (2)
• Recommendation:

• Decide between pure JSON and I-JSON

• Pure JSON: Anything that is integer in JSON data
model is represented as integer in CBOR (mt 0/1, tag
2/3)

• I-JSON: Anything that is integer after conversion from
decimal to binary64 and is |x| < 253 (allowing exact
representation) becomes a CBOR integer (mt 0/1);
everything else stays float (mt 7 ai 25/26/27)

 29

Major Editorial Todos
• get rid of "follows" terminology #85

• Add redundant text for:

• Uneven number of items in a map is not-well-
formed #80

• More cleanup security considerations #90

• Data item vs. encoded data item #64

 30

Minor editorial

• #68: advice on small integer Map keys

• #67: describe options in handling unknown
extension point values (Tags/Simple values)

 31

Slides from IETF104

 32

Tag validity

• Example: Tag 1 (POSIX time) takes int/float

• Maybe should have taken decimal as well (then we
may not have needed Tag 1001)

• Similar: Tag 36 (mime message) only takes UTF-8 
Should have taken byte string as well  
Now have 257 for that.

 33

Reactionary Tag Validity

• Tag is defined with a certain set of substructures
(structural compatibility)

• A new substructure can never accede to an existing
Tag

• There is little ambiguity about Tag validity

 34

Progressive Tag Validity
• Tag is defined with abstract semantics

• Any substructure that fulfills that abstract semantics
will do

• E.g., Tag 1 could take any number in ℝ

• E.g., Tag expecting array of numbers could take
typed array (Tag 64..87)

 35

Application expectedness  
of Tags

• CDDL: #6.36(tstr) vs. #6.36(tstr/bstr)

• Note that standard prelude says:  
 mime-message = #6.36(tstr)

• But application saying #6.36(tstr/bstr) is
unambiguously using the tag

 36

Ways forward
• Clarify the reactionary tag validity approach taken in

RFC 7049 (done well by PR #18)

• Much stricter

• Still modulated by application expectedness

• Move to progressive tag validity

• Much more flexible

• Potential interoperability surprises outside CDDL

 37

How to specify
Tag type system

• New tag definition should document

• expectations from tagged value (e.g., ∈ℝ)

• Abstract “type” of the result

 38

Other todos
• Check Strict some more

• Clean up preferred encoding; base deterministic
encoding on this

• Slightly Update IANA considerations

• (We have another specification required in 1+1)

• One more round of reviews, and then WGLC?

 39

Other CBOR
housekeeping

 40

draft-bormann-cbor-
sequence

• Patterned after RFC 7464 (JSON Sequences)
• Format definition, Media type, Content-Format, …
• But quite different:

• CBOR is easy to concatenate  
(no ASCII RS needed)

• No attempt at error recovery needed or possible
• People already want to put normative references to

this into their documents

 41

CBOR tag definitions
Carsten Bormann, 2018-07-17

 42

Batteries included
• RFC 7049 predefines 18 Tags

• Time, big numbers (bigint, float, decimal), various
converter helpers, URI, MIME message

• Easy to register your own CBOR Tags

• > 20 more tags: 6 for COSE;  
UUIDs, Sets, binary MIME, Perl support,  
language tagged string, compression

 43

Status of Tags drafts
• OID: On charter, kitchen sink, expired.  

Needs work.

• Array: On charter, WGLC completed, waiting for write-up.

• Time: Off charter; solved for now by FCFS registration  
(3-byte tag 1001); move spec to RFC how?

• Template: Off charter  
(will likely be done with SCHC anyway)

• “Useful tags”: Maybe document some of the more useful
registered tags in an RFC on its own (could include Time)?

 44

