2017-01-09: CBOR WG

* Concise Binary Object Representation
Maintenance and Extensions

1. Standardize CDDL as a data definition language
(May 2018 milestone, actual: August 2018)

2. Formal process: Take RFC 7049 to IETF STD level
(October 2018 milestone)

3. (Maybe define a few more CBOR tags, as needed.)

CDDL

Draft-ietf-cbor-cdd|-08
-> RFC 8610

2019-06-12

Nach dem Spiel ist vor dem Spiel
(After the game is before the game)

[
reeking post-1 .UTF] 03

o SUIT people tell us they’'d now really like:
e Import function (here: for COSE)
 Namespace control (related to import)

* At some point, a module registry may make sense

 (For more ideas, see also IETF102 slides)

draft-bormann-cbor-cddl-
freezer

Collected items that were not done for CDDL 1.0
Can be thawed now
What should we pick up?

_et’'s prioritize today

Things that can be done on the
side (no new CDDL needed)

e .pCre
e Big-endian .Dits

e Dbitfield

Alternative Representations (1)

cddlj = ["cddl”, +rule]
ule = ['="/"/="] "//:", namep, type]
namep = ["'name’, id] / ['gen"’, id, +id]
id = text regexp [A—Za—z@ $1(([-.])*[A-Za-z0-9@_$])*"
op="."1"."]

text regexp "\ [A /a-7@ $](([D*[A-Za-z0-9@_$])*'
namea = ['name’, id] / ['gen’, id, +type]
type = value / namea/ "op", op, type, type] /
"map", group] / ["ary", group] / ['tcho", 2*type] /
"unwrap”, namea] / ["enum", group / namea] /
“orim”, ?(0..7, ?uint).
group = ['mem", null/type, type] /
"rep", uint, uint/false, group] /
"seq’, 2*group] / ['gcho’, 2*group]
value = ['number’/"text'/"bytes’, text]

Alternative Representations (2)

labeled-values = {
? fritz: number,
* label => value
}
label = text
value = number
9
["cddl”,
=",
["'name”, "labeled-values'],
["'map”’,
['seq’,
['rep”, O, 1, ['mem’, ['text’, "tritz"], ['"name”, "number’]]],
['rep’, O, false, ['mem”, ['name’, "label’], ['name’, "value"]]]]]],
'=", ["name’, "l[abel], ['"name’, "text"]],
['=", ['"name’, "value'], ['name”, "number']]]

Dbittield

Field = uint .bitfield Fieldbits @
Fieldbits = | “Ing o
/70/6
flag1: [1, bool] J/f@
LD ’ \)
val: [4, Vals],
flag2: [1, bool],
]

Vals = &(A: 0, B: 1, C: 2, D: 3)

10

2. Base Language Features

e 2.1 Cuts (e.qg., for whole map members)

« 3.1 computed literals (base = 400 a = base + 4)

e 3.2 tag-oriented literals — dt'2019-07-21119:537
e 3.3 regular expression literals

e 4 Embedded ABNF

11

| arger projects (1)

e Co-occurrence constraints
e Predicates
e Pointers/Selectors

session = { .. timeout: uint, .. }

other-session = {

timeout: uint .1t [somehow refer to session.timeout],

12

| arger projects (2)

 Module superstructure
« Namespacing
* |Import/Export (relating to URIs?)

* \ersioning

13

| arger projects (2a)

e \Variants

o Particularly: CBOR and JSON variants

| arger projects (3)

 Augmentation
* Relationship to semantics, RDF, ...
e (et real default values

e Add units and other metadata

15

Should there be a CDDL
roadmap WG document?

Could adopt something like -freezer as WG
document

No intent to ever publish as an RFC

But an “official” document with (at least a snapshot
of) directions that are moving towards consensus

Document priorities

16

CBOR (RFC 7049) bis

Concise Binary Object Representation
Carsten Bormann, 2019-03-27

17

TODOs left from IETF104

| evels of Errors #45

e (not) well-formed — CBOR Syntax
* Error: Not recoverable (outside diagnostic tools)
e See also Appendix C (pseudocode)

e (not) valid — CBOR Semantics
o Error: Presentable to the application in principle

e (Nnot) expected —
Application Syntax and Semantics

e This is often expressed in CDDL

19

To do: strict (from 104)

» A strict decoder only accepts preferred encoding
 Again, this also has an application component
e Similar: deterministic-checking decoder

e [ext about security miracles already toned down

20

Note: strict mode = validity

* Probably need better terminology here.
 Require-deterministic vs. require-valid
* The latter is hard to do for all tags
e UTF-8 validity is mostly fine

 Map validity can only be enforced at generic
decoder precision; needs application help anyway

21

Tag validity (1)

At IETF104, we discussed purely structural vs.
semantic validity conditions for tags

Decided to move some non-essential tags to a
separate document to open them up for semantic
validity

On further reflection, this sends the wrong message

Don’t do that, then

22

Tag validity (2)

o Stick with structural tag validity

 Mention that validity, as always, Is ultimately an
application concept (#86)

* Encourage generic decoder implementations to

oresent structurally invalid tags as such to the
application

* Application can then always implement semantic
validity, It desired

23

lag valiaity: #92

 Some early tags cannot generally be processed by the
application: Tag 25, Tag 29 need to know the serialization order

 Some implementations preserve ordering even in maps, SO
the application can process these tags

* Many don't, so the generic decoder would have to process

these tags during decoding

e This limits interoperabillity to a sulbset of decoders

e Mention tha

creating mo

' these tags exist, discourage (SHOUL

implementations

D NO

)

‘e of these, but don't outlaw between consenting

* Note that this is different from making applications depend on

24

map ordering, as this can be implemented by the decoder

Tag validity: Embeddeo
CBOR (Tag 24)

Tag 24 (Embedded CBOR) does not require anything
from the byte string for tag validity

Tag 36 (Embedded MIME) does require valid MIME for
tag validity

Suggestion from the interim: make Tag 24 require
wellformedness (not validity) for tag validity (#86)

Maybe give some guidance for tag developers (#86):
Don't overdo validity requirements, but do give generic
decoders a chance to do useful work

29

Other validity Checking

 Make map validity checking mandatory”? #63

* This might be the other dimension of “strictness”

20

Newer |ssues

JSON-to-CBOR conversion (1)

e Fish sticks = aguarium

 JSON numbers are not identified as integers or floats
separately; they are tloats that can be integer (10, 10.0, 1e1)

 CBOR separates the worlds of integers and floats; conversion
needs to make a decision

* Floating point range is greater than base CBOR integer range:

Not all floats that appear as integer can be converted to 64-bit

integer

* Butthen, in [-dSON, everything above 53 bits is inexact anyway

28

JSON-to-CBOR conversion (2)

e Recommendation:
* Decide between pure JSON and [-JSON

 Pure JSON: Anything that is integer in JSON data
model is represented as integer in CBOR (mt 0/1, tag
2/3)

e |-JSON: Anything that is integer after conversion from
decimal to binary64 and is |x| < 253 (allowing exact
representation) becomes a CBOR integer (mt 0/1);
everything else stays float (mt 7 ai 25/26/27)

29

Major editorial [odos

get rid of "follows" terminology #85
Add redundant text for:

 Uneven number of items in a map is not-well-
formed #80

More cleanup security considerations #90

Data item vs. encoded data item #6064

30

Vinor eqditorial

#08: advice on small integer Map keys

 #06/: describe options in handling unknown
extension point values (Tags/Simple values)

31

Slides from IETF104

lag valiaity

 Example: Tag 1 (POSIX time) takes int/tloat

 Maybe should have taken decimal as well (then we
may not have needed Tag 1001)

e Similar: Tag 36 (mime message) only takes UTF-8
Should have taken byte string as well
Now have 257 for that.

33

Reactionary lag Validity

e Jag is defined with a certain set of substructures
(structural compatibility)

* A new substructure can never accede to an existing
Tag

* There is little ambiguity about Tag validity

34

Progressive lag Validity

Tag Is defined with abstract semantics

Any substructure that fulfills that abstract semantics
will do

E.g., lag 1 could take any number in R

E.g., Tag expecting array of numbers could take
typed array (Tag 64..87)

35

Application expectedness
of Tags

« CDDL: #6.306(tstr) vs. #6.306(tstr/bstr)

 Note that standard prelude says:
mime-message = #6.36(tstr)

» But application saying #6.36(tstr/bstr) is
unambiguously using the tag

36

Ways forward

o Clarity the reactionary tag validity approach taken in
RFC 7049 (done well by PR #18)

* Much stricter

o Still modulated by application expectedness
* Move to progressive tag validity

* Much more flexible

* Potential interoperability surprises outside CDDL

37

How to specity
lag type system

 New tag definition should document
e expectations from tagged value (e.g., €R)

o Abstract “type” of the result

38

Other todos

Check Strict some more

Clean up preterred encoding; base deterministic
encoding on this

Slightly Update |ANA considerations

* (We have another specification required in 1+1)

One more round of reviews, and then WGLC?

39

Other CBOR
nousekeeping

draft-bormann-cbor-
seguence

e Patterned after RFC 7464 (JSON Seqguences)
 Format definition, Media type, Content-Format, ...
 But quite different:

« CBOR is easy to concatenate
(no ASCII RS needed)

 No attempt at error recovery needed or possible

 People already want to put normative references to
this into their documents

41

CBOR tag definitions

Carsten Bormann, 2018-07-17

Batteries included

« RFC 7049 predefines 18 Tags

* Time, big numbers (bigint, float, decimal), various
converter helpers, URI, MIME message

* Easy to register your own CBOR Tags
> 20 more tags: 6 for COSE;

UUIDs, Sets, binary MIME, Perl support,
language tagged string, compression

43

Status of Tags drafts

OID: On charter, kitchen sink, expired.

Needs work.

Array: On charter, WGLC completed, waiting for write-up.

Time: Off charter; solved for now by

(3-byte tag 1001); move spec to RFC how?

Template: Off charter

(will likely be done with SCHC anyway)

"Useful tags”: Maybe document some of the i

registered tags in an

RFC on its own (could inc

44

-CFS registration

ore usef

ude Tir

