Pairing-Friendly Curves draft-yonezawa-pairing-friendly-curves

Shoko YONEZAWA, Tsunekazu SAITO, Tetsutaro KOBAYASHI

July 25, 2019 CFRG Meeting IETF105 Montreal

Brief Overview

- Problem statement
 - Pairing-based cryptography is getting widely used
 - The security evaluation of pairing-friendly curves, which realize pairing-based cryptography, has been changed due to the attack proposed in 2016
 - Introducing secure pairing-friendly curves are required
- Goal
 - Show the latest security evaluation of well-known pairing-friendly curves
 - Show the parameters of pairing-friendly curves with each security level
 - According to their security evaluations in several papers and implementation status in several libraries

Related RG Items

- BLS Signature Schemes (draft-boneh-bls-signature, to appear as draftirtf-bls-signature)
 - Pairing-based schemes that enable signature aggregation
 - Pairing-friendly curves are necessary for construction
- Hashing to Elliptic Curves (draft-irtf-cfrg-hash-to-curve)
 - Most pairing-based schemes (including BLS signatures) require hashing to pairing-friendly curves

Pairing-Based Cryptography

- A kind of elliptic curve cryptography which utilizes "pairing"
- Thanks to the property of pairing, cryptographic algorithms and protocols with more functionalities are getting widely used

Standards

- Identity-based cryptography (IBCS) [RFC5091]
- Sakai-Kasahara Key Encryption (SAKKE) [RFC6508]
- Identity-based authenticated key exchange (IBAKE) [RFC6539]
- (Identity-based) key agreement (ISO/IEC)
- Elliptic Curve Direct Anonymous Attestation (ECDAA) (TCG, FIDO, W3C)
- MIKEY-SAKKE (3GPP) key encryption

Implementations

- M-Pin (MIRACL) multi-factor authentication protocol
- Intel SGX EPID (Intel) remote anonymous attestation protocol
- Geo Key Manager (Cloudflare) attribute-based encryption
- zk-SNARKs (Zcash) zero-knowledge proof for blockchain
- Decentralized Random Beacon (DFINITY) threshold signature
- BLS signature (Algorand) aggregate signature

Pairing-Based Cryptography (cont.)

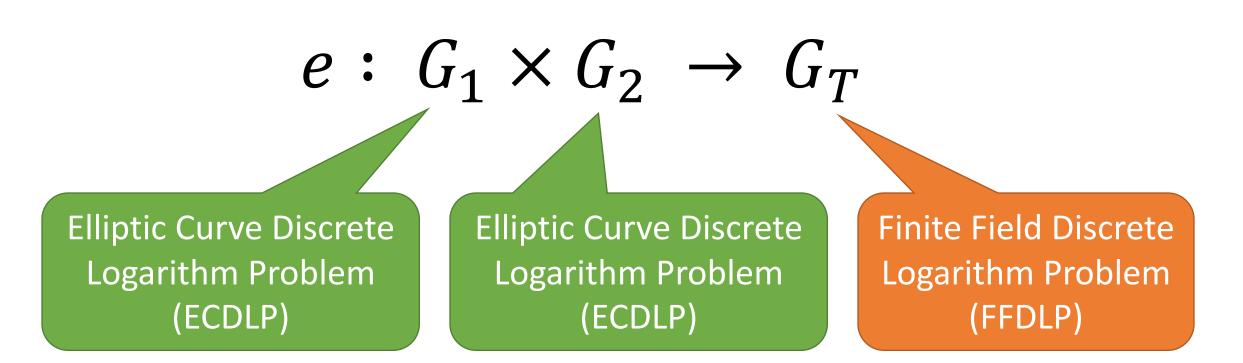
- Like standard elliptic curve cryptography, pairing-based cryptography requires underlying elliptic curves
- Such elliptic curves are called <u>pairing-friendly curves</u>
- The security of pairing-based cryptography relies on the security of underlying pairing-friendly curves

Pairing

• Pairing (a.k.a. bilinear map) is a map from G_1 and G_2 onto G_T

$$e: G_1 \times G_2 \rightarrow G_T$$

satisfying


$$e([a]S,[b]T) = e(S,T)^{ab}.$$

- In general, G_1, G_2 and G_T are chosen as follows.
 - G_1 : a subgroup of the group defined over an elliptic curve E
 - G_2 : a subgroup of the group defined over a twisted curve of E
 - G_T : a multiplicative group of finite field
- Various pairings
 - Weil pairing
 - Tate pairing
 - Optimal Ate pairing \leftarrow most efficient and popular

Pairing-Friendly Curves

- A special kind of elliptic curves where pairing is efficiently computable
- Examples curves
 - Barreto-Naehrig (BN) Curve
 - Barreto-Lynn-Scott (BLS) Curve
 - BLS12 (embedded degree = 12)
 - BLS24 (embedded degree = 24)
 - BLS48 (embedded degree = 48), etc.
 - Kachisa-Schaefer-Scott (KSS) Curve
 - Miyaji-Nakabayashi-Takano (MNT) Curve
 - etc.
- Pairing-friendly curves vary in parameters (key length), which determine the security strength
 - ex. BN254, BN256, BLS12-381, ...

Security of Pairing-Friendly Curves

- Since the security of most pairing-based cryptography is reduced to the difficulty of these problems, we can only consider these DLPs.
- We should evaluate FFDLP in G_T as well as ECDLP in G_1 and G_2

Impact of Attack to Pairing-friendly Curves

- In 2016, Kim and Barbulescu presented a new number field sieve algorithm, exTNFS, at CRYPTO 2016 [KB16]
- Attacking by exTNFS affected the difficulty of FFDLP
- Due to the attack, the security level of ALL pairing-friendly curves has fallen
 - ex. BN256: 128-bit secure \rightarrow 100-bit secure

[KB16] T. Kim and R. Barbulescu, Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case," CRYPTO 2016.

Security Evaluation of Pairing-Friendly Curves

- After exTNFS, BN256 (regarded as 128-bit secure so far) achieves at most 100 bits of security now
- Introducing new parameters for each security level is required
 - 128 bits of security
 - 192 bits of security
 - 256 bits of security
- We select the parameters in terms of
 - Security
 - Efficiency
 - Wide use

128 / 256 Bits of Security

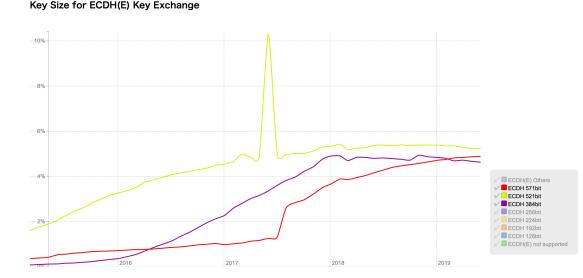
- 128 bits
 - BN462
 - Evaluated as approx. 133.49 bits of security [BD18] conservative
 - Implementation available
 - BLS12-381
 - Evaluated as approx. 117 120 bits of security [NCCG] optimistic
 - Implementation available and widely used
- 256 bits
 - BLS48-581
 - Evaluated as approx. 256 bits of security [KIK+17]
 - Implementation available

[BD18] R. Barbulescu and S. Duquesne, "Updating Key Size Estimations for Pairings," Journal of Cryptology, 2018. [NCCG] NCC Group, "Zcash Overwinter Consensus and Sapling Cryptography Review,"

<u>https://www.nccgroup.trust/us/our-research/zcash-overwinter-consensus-and-sapling-cryptography-review/</u> [KIK+17] Y. Kiyomura et al. "Secure and Efficient Pairing at 256-Bit Security Level," ACNS 2017.

Open Issue : 192 Bits of Security

- Candidate curve : BLS24
- Several papers for 192bit-secure pairing-friendly curves
- NO implementation published
 - RELIC preparing BLS24-477 but no executable code
 - AMCL implementing BLS24 curve but not published
- QUESTION: How can we treat 192-bit parameters ?


Fact: 192 Bits of Security

- US CNSA Suite
 - In order to protect up to TOP SECRET, the security parameters for asymmetric cryptography are set to satisfy 192 bits of security.

Transition Algorithms			
Algorithm	Function	Specifi- cation	Parameters
Advanced Encryption Standard (AES)	Symmetric block cipher used for in- formation protection	<u>FIPS Pub</u> <u>197</u>	Use 256 bit keys to protect up to TOP SECRET
Elliptic Curve Diffie- Hellman (ECDH) Key Exchange	Asymmetric algorithm used for key establishment	<u>NIST SP</u> 800-56A	Use Curve P-384 to protect up to TOP SECRET.
Elliptic Curve Digital Signature Algorithm (ECDSA)	Asymmetric algorithm used for digital signatures	FIPS Pub 186-4	Use Curve P-384 to protect up to TOP SECRET.
Secure Hash Algorithm (SHA)	Algorithm used for computing a condensed representation of information	<u>FIPS Pub</u> <u>180-4</u>	Use SHA-384 to protect up to TOP SECRET.
Diffie-Hellman (DH) Key Exchange	Asymmetric algorithm used for key establishment	IETF RFC 3526	Minimum 3072-bit modulus to protect up to TOP SECRET
RSA	Asymmetric algorithm used for key establishment	NIST SP 800-56B rev 1	Minimum 3072-bit modulus to protect up to TOP SECRET
RSA	Asymmetric algorithm used for digital signatures	FIPS PUB 186-4	Minimum 3072 bit-modulus to protect up to TOP SECRET.

https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

- SSL Pulse Trends (June 2019)
 - As for the key length of ECDH(E) in TLS servers, 5.23% of the servers supports 521bit, 4.89% supports 571bit while 4.63% supports 381bit.

https://kjur.github.io/www/sslpulsetrend/index.html#kxecdh ¹³

History and Next Steps

- 00 version
 - Initial submission
- 01 version
 - Added pseudo-codes for pairing computation (from Kenny)
 - Added example parameters and test vectors of each curve (from Kenny)
- 02 version
 - Added 192 bits of security (no parameter provided yet) (from John)
 - Resolved comments from ML (from Mike, David, Marek and John)
 - Updated the status on applications and libraries
- Next Steps
 - Adoption call if interested