
* Five9 may have IPR on this draft: https://datatracker.ietf.org/ipr/3643/

J. Rosenberg C. Jennings A. Minnesale J. Livingood J. Uberti

Real Time Internet Peering Protocol*
draft-rosenbergjennings-dispatch-ripp-03

IETF 105 – July 22nd, 2019

V6

https://datatracker.ietf.org/ipr/3643/

Goals for Today

• Share the problems we’re trying to solve

• Gauge interest from others in solving these problems

• See if there is interest in implementing and tuning

• Technical details aren’t important right now (in fact, the co-authors themselves don’t all agree!)

• We’re not asking for a BoF yet

• We want to implement and prototype and then return to the next IETF with a more baked

proposal

RIPP Problem Space

We b e x U s e r P S T N

• Problem limited to stuff that links to
PSTN (i.e., voice, DTMF, etc.)

• Can also be used for things like Call
Centers with linking to an ASR or TTS
cloud provider and other Voice UI bots

Why don’t we just stick with what we
already have (SIP + SDP + RTP)?
A cloud service like Webex can use existing
cloud services for all of the following:

 Autoscaling

 Load balancing

 High reliability

 API gateways

 DDos mitigation tools

 Service Mesh (e.g., Istio)

 APM

 Tools the workforce already knows how to use

We could build all of these in a way that
achieves all of this, but it would be:

More work

Harder to deploy

Harder to use

Sub-optimal because wouldn’t leverage the vast
changes that have occurred to support HTTP-
based APIs

This is the other half of WebRTC

Web App

Telephony Trunk Provider

WebRTC – client to cloud

RIPP – cloud to cloud

Use Cases
• Add browser voice customer care to eCommerce sites

 WebRTC solves browser to web servers, but we need to trunk the call to the contact center from there

 This requires softswitches, SBCs, and special network considerations today – high complexity, not done

often or broadly

 With RIPP – it is “just another web app”

• Telecom apps on web PaaS

 AWS, Azure, Google – increasing sets of services making it very easy to deploy and run non real-time

apps (e.g., Google AppEngine, HTTP LB, Istio on GKE, APIGee, etc)

 They could modify all of their code to ALSO work for SIP – but they haven’t, and likely wont

 Goal – make it so that once they go HTTP3, real-time will just work

Use Cases

• Increase reliability SaaS to trunking provider calls

 Webex to Comcast; Five9 to Tata; RingCentral to Verizon

 Difficult to achieve hitless upgrades – server restarts cause calls to drop

 Underlying VM restarts and migrations cause server restarts – calls drop

 Cluster expansion / contractions difficult – no way to drain and migrate calls reliably and

consistently

 Shouldn’t it be as easy to achieve hitless upgrades, handle VM restarts & migrations, and

deal with automated cluster expansion / contraction as it is today for web apps??

Technical Details
Really just a starting point to help folks understand what we had in mind

Set up a call using specified codecs to this phone number

Codec, etc. that Comcast is willing to support for calls

General Information Flow
Ignore what protocols are used and just look at data for a call from Webex to PSTN…

Media (Audio and DTMF)

Event notification of call ringing, answered, etc.

Capabilities

• Capabilities allow Comcast to indicate what codecs it supports and other relatively static

information about system capabilities

 These do not change frequently – reasonable to think of as updating on perhaps a daily basis, but they

do not contain per call information

 Capabilities could include:

- Supported codecs

- Max bitrate & max sample rate

- Force use of CBR (constant bit rate for the security crazy)

- A few more weird things for advanced use-cases

Advertisement

• The calling side (Webex in this case) has the capabilities of the other side (in this

case, Comcast). The calling side creates an Advertisement of all the exact details for

setting up the call. These details must be consistent with the capabilities from the

other side. The advertisement is sent to Comcast and they can *only* accept or

reject it. There is no offer / answer like negation.

 Information in advertisement:

- Number to call

- Caller ID of caller

Caller ID

We use (drum roll please)…

 Pass port

• All the authors are big believers that:

 In the near future, it will be possible to do unreliable data over QUIC

 HTTP/3 over QUIC is a good idea

• Currently mapped to multiple HTTP requests with simple API

https://ripp.example.com/trunks/{trunkID/consumerTrunk - get an auth token

https://ripp.example.com/trunks/{trunkID/capAdv - get the Advertisement of capabilities for this trunk

https://ripp.example.com/trunks/{trunkID/calls - Get ongoing calls on this trunk

https://ripp.example.com/calls/{callID/prevEvent - Get the previous even (ringing, answer ….)

https://ripp.example.com/calls/{callID/event - Wait for next and event and return it

https://ripp.example.com/calls/{callID}/media-forward - Flow of media chunks in forward direction

https://ripp.example.com/calls/{callID/media-reverse - Flow of media chunks in reverse direction

Protocol Mapping

Media Byways

Media Byways

• We are sending media over the HTTP/3 connection

 Many ways to do this— still need to figure out what

works best

• Draft currently purposes several simultaneous HTTP

long poll type requests that are multiplex in one

HTTP/3 session. The sender sends media on

whichever one is currently “empty” and waiting for

data. Each packet is ACK’d so that the sender knows

more data can be sent on that HTTP transaction.

These are called byways.

• There are multiple byways each direction

A B

RTP 1

RTP 2

RTP 3

TLS handshake

Post

Post

RTP 1

ACK

RTP 3

ACK

RTP 2

ACK

https://ripp.example.com/trunks/%7BtrunkID/consumerTrunk
https://ripp.example.com/trunks/%7BtrunkID/capAdv
https://ripp.example.com/trunks/%7BtrunkID/calls
https://ripp.example.com/calls/%7BcallID/prevEvent
https://ripp.example.com/calls/%7BcallID/event
https://ripp.example.com/calls/%7BcallID%7D/media-forward
https://ripp.example.com/calls/%7BcallID/media-reverse/

Events

The events that flow both directions on a call are:

 Ringing: phone is ringing

 Accepted: user (human or bot) answered the call

 Rejected: the user (human or bot) declined the call

 Failed: something went wrong

 Ended: user (human or bot) ended the call

Security

 TLS

• To the PSTN? Seriously? No. End-to-End Security

• Signaling encryption and integrity

• Media encryption and integrity

• Server authentication

 OAuth • Client authentication

Backup Slides

Inbound Calls

• Pretty much the opposite of the outbound case with an automated pre-

configuration process.

• Before any calls take place, the Webex side creates a HTTP/3 connection to

Comcast and uses a specific API to pass Comcast an auth token and base URI for

Webex endpoint.

 Later, when Comcast has an incoming call for Webex, it uses that URI and auth token

to make the call happen.

Recover from Failed Server

• If the client finds the connection failed, closed, or just dead (no ACKs), it simply

forms a new HTTP connection using the URLs from before and picks up the old

call

 5 second window to do this before the far side terminates the call

Moving Calls

• Servers can tell client to migrate media connection gracefully to new server

• Clients can do the same

The API

https://ripp.example.com/trunks/{trunkID/consumerTrunk - get an auth token

https://ripp.example.com/trunks/{trunkID/capAdv - get the Advertisement of capabilities for this trunk

https://ripp.example.com/trunks/{trunkID/calls - Get ongoing calls on this trunk

https://ripp.example.com/calls/{callID/prevEvent - Get the previous even (ringing, answer ….)

https://ripp.example.com/calls/{callID/event - Wait for next and event and return it

https://ripp.example.com/calls/{callID}/media-forward - Flow of media chunks in forward direction

https://ripp.example.com/calls/{callID/media-reverse - Flow of media chunks in reverse direction

Gateway to SIP
RIPP to SIP

Webex GW

get adv

advertisement

for media

SIP

new call

call ID

get events

reverse media

INVITE

event: ringing

media

event: answer

for media

media

event: end

180 ringing

media

200 OK

media

BYE

for media

https://ripp.example.com/trunks/%7BtrunkID/consumerTrunk
https://ripp.example.com/trunks/%7BtrunkID/capAdv
https://ripp.example.com/trunks/%7BtrunkID/calls
https://ripp.example.com/calls/%7BcallID/prevEvent
https://ripp.example.com/calls/%7BcallID/event
https://ripp.example.com/calls/%7BcallID%7D/media-forward
https://ripp.example.com/calls/%7BcallID/media-reverse/

	Slide 1
	Goals for Today
	RIPP Problem Space
	Slide 4
	This is the other half of WebRTC
	Use Cases
	Use Cases
	Technical Details
	General Information Flow
	Capabilities
	Advertisement
	Caller ID
	Protocol Mapping
	Media Byways
	Events
	Security
	Backup Slides
	Inbound Calls
	Recover from Failed Server
	Moving Calls
	The API
	Gateway to SIP

