
WebTransport
IETF 105 dispatch



Bidirectional Communication on the Web

Client-Server Peer-to-peer

Reliable and ordered WebSocket

RtcDataChannelReliable but unordered

?

Unreliable and unordered



Bidirectional Communication on the Web (current)

Client-Server Peer-to-peer

Reliable and ordered WebSocket

RtcDataChannelReliable but unordered
RtcDataChannel but with 
ICE-lite (web developers 
need to generate SDP 

provision certificates to both 
sides out of band 

themselves)
Unreliable and unordered



Bidirectional Communication on the Web (proposed)

Client-Server Peer-to-peer

Reliable and ordered WebSocket
(also WebTransport!)

RtcDataChannelReliable but unordered

WebTransport

Unreliable and unordered



Target applications
Anything that wants one of the following:

● “WebSockets for UDP”
● “WebSockets without head-of-line blocking”

We’ve reached out to a wide range of web developers, and there is plenty of 
interest in this in following domains:

● Gaming
● Live streaming



What’s WebTransport?
A common framework for exposing client-server transport protocols on the Web.

Primitives provided:

● Streams
● Datagrams

Security features required:

● End-to-end encryption (TLS)
● Origin checks
● Connection liveness confirmation



QuicTransport

● A dedicated connection, just like traditional WebSocket
● Minimal code required on top of QUIC as-is

Http3Transport

● User-created arbitrary streams with an existing HTTP/3 connection
● Fits well into traditional reverse-proxy HTTP architecture

FallbackTransport

● Potential TCP-based fallback that can be used when only TCP is available

What transports are in WebTransport?



Comparison: QuicTransport vs RtcDataChannel

RtcDataChannel QuicTransport

Connection model P2P (via ICE) Direct

Transport protocol SCTP QUIC

Trust model Mutual TLS with certificate 
fingerprint exchanged 
out-of-band

Web PKI

Consent to send Via ICE QUIC with ALPN

Objects Streams of messages Streams, datagrams

Large message support Poor (blocks the channel 
without NDATA support)

Just works



Comparison: QuicTransport vs WebSocket

WebSocket QuicTransport

Head-of-line blocking Always Only inside same stream

Partial reliability None Datagrams, cancellable 
streams

Trust model TLS, Origin header TLS, Origin header

Preventing cross-protocol 
attacks

SHA-1 based handshake ALPN

Preventing middlebox 
confusion

XOR-based masking 
scheme

n/a (always encrypted)

Authentication features Cookies None (up to application)



Discussion time



WebTransport side-meeting

Tuesday, July 23

15:20 ~ 16:50

Room: C2 (21st Floor)



Links
● Drafts:

○ Overview
○ QUIC Transport 
○ HTTP/3 Transport
○ API (WICG)

● dispatch@ discussion
● WICG discussion (a lot of developer feedback here!)

https://tools.ietf.org/html/draft-vvv-webtransport-overview-00
https://tools.ietf.org/html/draft-vvv-webtransport-quic-00
https://tools.ietf.org/html/draft-vvv-webtransport-http3-00
https://wicg.github.io/web-transport/
https://mailarchive.ietf.org/arch/msg/dispatch/sIih9gBhJ4_faoN0GrQ9Xweue2w
https://discourse.wicg.io/t/webtransport-proposal

