LEDBAT++: Congestion Control for Background Traffic

ICCRG, IETF 105

Praveen Balasubramanian, Osman Ertugay, Daniel Havey

LEDBAT (RFC 6817) Recap

- Minimize the impact of "lower than best effort" connections on the latency and bandwidth of other connections
- Compare measured delay with the "minimum" delay
- If delay is less than target, additive increase
- If delay is higher than target, additive decrease
- No strict requirements on slow start (suggestion to avoid)
- React to packet loss and ECN like standard TCP

Problems with LEDBAT

- One-way delay measurements are hard with TCP
 - No standard clock frequency or synchronization
 - Clock skew
- Latecomer advantage
 - Reliance on inherent burstiness of network traffic
- Inter-LEDBAT fairness
 - Proportional feedback uses both additive increases decreases, stable queue but no fair sharing
 - Carofiglio, G. et al. "Rethinking the Low Extra Delay Background Transport (LEDBAT) Protocol"
- Vague recommendations regarding slow start
- Latency drift
 - Impacts long running LEDBAT connections
- Low latency competition
 - If bandwidth is large, queueing delay never exceeds the fixed target

LEDBAT++

- Congestion control algorithm for TCP
- LEDBAT++ comprises of the following
 - Round trip latency measurements
 - Slower than Reno cwnd increase with adaptive gain factor
 - Multiplicative cwnd decrease with adaptive reduction factor
 - Modified slow start
 - Initial and periodic slowdown
- Part of Windows 10 since Anniversary Update
- Currently in use by Windows Error Reporting, Windows Update
 Delivery Optimization, and System Center Configuration Manager

Round trip latency

- Advantages
 - Already available in TCP
 - No need for clock synchronization
- Disadvantages
 - Incorporates queuing delay in both directions
 - Receiver delays and delayed ACKs
- Mitigations
 - Erring on the side of higher latency estimation is acceptable
 - Enable TCP timestamp option implicitly for LEDBAT connections
 - Filter the RTT samples (minimum of the 4 most recent samples)
 - Use a TARGET delay of 60 ms
 - Larger than typical* server ACK delay (50ms)
 - 100 msec consumes 2/3rd of budget for 150 msec maximum acceptable delay for VoIP

Slower than Reno

- Reno
 - On packet loss: W -= W/2
 - On packet acknowledgement: W += 1/W
- Introduce a reduction factor F:
 - On packet loss: W -= W/2
 - On packet acknowledgement: W += 1/(F*W)
- Throughput of LEDBAT++ connection will be a fraction (1/SQRT(F)) of the throughput of regular TCP connection
- Based on experimentation we picked an Adaptive scheme for F
 - F = min (16, CEIL (2*TARGET/base))
 - 16 is a good tradeoff between responsiveness and performance
- Solves low latency competition problem

Multiplicative Decrease

• Carofiglio, G. et al "Rethinking the Low Extra Delay Background Transport (LEDBAT) Protocol" suggest multiplicative decrease

	Standard LEDBAT, per RTT	Multiplicative decrease, per RTT
Delay lower than	W += Gain * (1 -	W += Gain
target	delay/target)	
Delay larger than	W -= Gain * (delay/target -	W += Gain – Constant * W *
target	1)	(delay/target - 1)

- Only works when all connections measure same base delay, so
 - Use constant value of 1 and cap the multiplicative decrease coefficient to be at least 0.5
 - Ensure that cwnd never decreases below 2 packets
- Solves the Inter-LEDBAT fairness problem

Modified slow start

- Skipping slow start results in really poor performance on long delay links
- Slower than Reno ramp up
 - Apply the reduction factor F to the congestion window increases
 - Limit the initial cwnd to 2 packets
- If queuing delay is larger than 3/4^{ths} of the TARGET, exit slow start
 - Immediately move to the "congestion avoidance" phase
- Only apply the "exit on excessive delay" during the initial slow start
 - Subsequent slow starts capped by recorded ssthresh

Initial and periodic slowdown

- Traffic is sustained for long periods
 - Inaccurate base delay estimates
 - Causes latency drift as well as the lack of inter-LEDBAT fairness
- Force gaps for measuring base delay, or "slowdown" periods
 - "slowdown" is an interval during which the LEDBAT++ connection voluntarily reduces its traffic
 - Upon entering slowdown, set ssthresh = cwnd, and reduce cwnd to 2 packets
 - Keep CWND frozen at 2 packets for 2 RTT
 - After 2 RTT, ramp up according to "slow start" until cwnd reaches ssthresh
- Initial slowdown 2*RTT after first slow start exit
- Periodic slowdown not more than 10% drop in throughput
 - Measure duration of slowdown from entry to ramp up to ssthresh
 - Schedule next slowdown 9 times this duration
- Solves the latency drift problem

Next Steps

- draft-balasubramanian-iccrg-ledbatplusplus-00 submitted
- RAND-Z IPR disclosure coming up

Adopt document in iccrg?