rLEDBAT

Marcelo Bagnulo & Alberto Garcia Martinez U. Carlos III de Madrid

Anna Maria Mandalari Imperial College London

Praveen Balasubramanian, Daniel Havey, Gabriel Montenegro Microsoft

About LEDBAT

- Ledbat (RFC6817) is a congestion controller that provides less than best effort traffic
- LEDBAT algorithm. Defines a queuing delay target T
 - Increase/decrease CWND based on the queuing delay
 - Queuing delay calculated as the difference between the OW Base Delay and the OW Current Delay

LEDBAT shortcomings

- Poor interledbat fairness
 - Late comer advantage
- Difficulties measuring the OWD in TCP, even using TCP TS.

rLEDBAT

 Receiver based less than best effort congestion controller for TCP

– Based on LEDBAT (LEDBAT++ actually)

- Congestion control algorithm runs in the receiver
- The receiver controls de sender's rate through the RCVWND
- Measure RTT and reacts accordingly

rLEDBAT motivation (I)

- New deployment models
 - File distribution through CDNs (e.g. software updates) do not benefit from LEDBAT
 - CDN surrogates rarely implement LEDBAT
 - No signalling available to convey which content is ledbat
 - Transport layer proxies are a commonplace.
 - Security, performance, etc
 - Proxies do not implement and do not know when to use LEDBAT
 - The segment between the proxy and the receiver does not benefits from LEDBAT

rLEDBAT motivations (II): User defined preferences You Tube Internet **BuzzFeed** 📚 Spotify® Google Maps

rLEDBAT motivations (II): User defined preferences You Tube BOTTLENECK Internet **BuzzFeed** 📚 Spotify® Google Maps

rLEDBAT motivations (II): User defined preferences

- The user is aware of her own preferences which should rule the bottleneck resource allocation
 - The servers are not aware of them
 - The base station is not aware neither
- The sender cannot properly select which traffic is LEDBAT is which one is best effort.

rLEDBAT algorithm goals

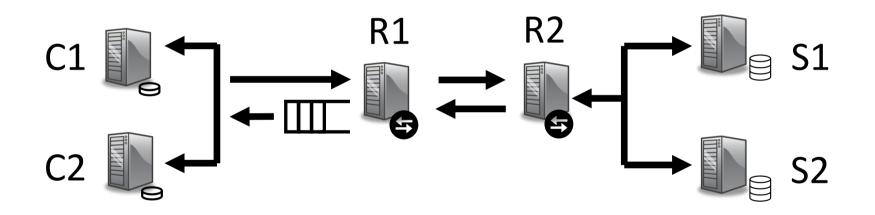
- When rLEDBAT is sharing a bottleneck with latency sensitive traffic (e.g., VOIP traffic), the queueing delay introduced by rLEDBAT should be acceptable for the other traffic in the link.
- When there are several rLEDBAT flows, the available capacity should be equally split.
- When there is only rLEDBAT traffic in a bottleneck link, it should be able to seize all available capacity in steady state.
- When rLEDBAT is competing with best effort flows (in particular with standard-TCP), rLEDBAT should minimize its interference by giving available capacity for best effort flows.

rLEDBAT algorithm

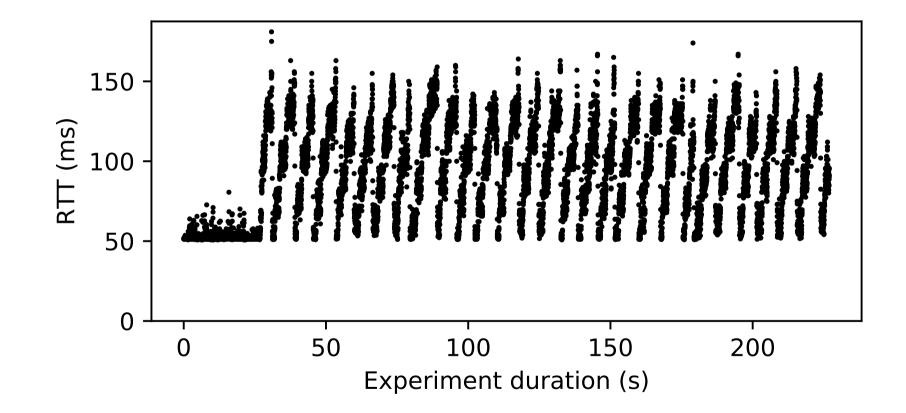
- Measuring the RTT
- qd is equal to the current RTT minus the base RTT
- Define a target RTT T
- if qd < T , then rlWND[t1] = rlWND[t0] + α *MSS/rlWND[t0]
- if qd > T , then rlWND[t1] = rlWND[t0] * βd (once per RTT)

Controlling the RCVWND

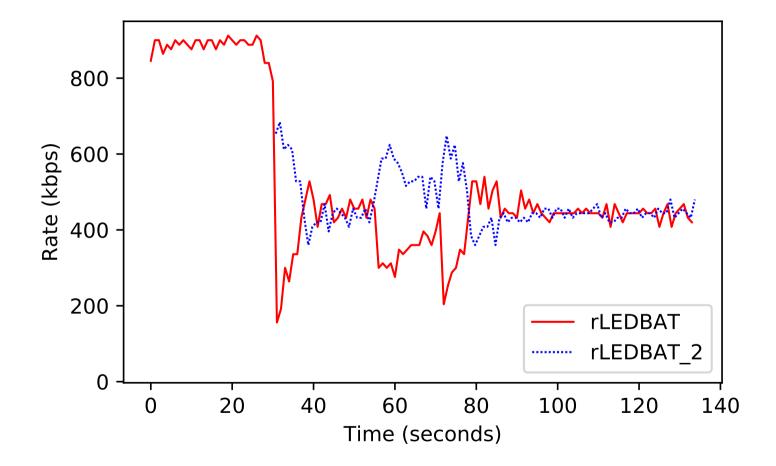
- Compatibility with flow control
 - RWND carries the min of the flow ctrl and rLEDBAT
- Interaction with sender's congestion control
 - CWND is the min of sender's cong ctrl and RWND
 - rLEDBAT is less aggressive than TCP cong ctrl, so likely RWND< cong ctrl wnd
- Avoiding shrinking the window
 - rLEDBAT multiplicative decrease may result in reductions larger than the received bytes
 - rLEDBAT multiplicative decreases at most once per RTT
 - rLEDBAT drains packets in flight until reaches the desired RWND without shrinking it
- WS option
 - WS values between 0 and 11 result in units of less than 1 MSS
 - WS values larger than 12 result in more coarse control, more experiments are needed buit values are rarely used and WS is set by the client.


Using the RTT

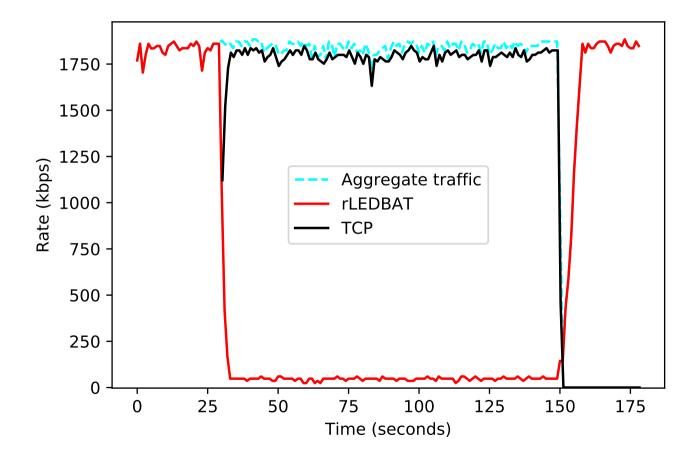
- Includes the queuing delay in the reverse path
- Pure receivers: use the TS to match packets
- Increased RTT due to inability to send packets in the sender
 - No data, rare
 - No RCVWND, avoid measuring if the RCVWND is being reduced
- Granularity of TS values may result in multiple pkts carrying the same TS
 - Only use the first pkt with a TS value

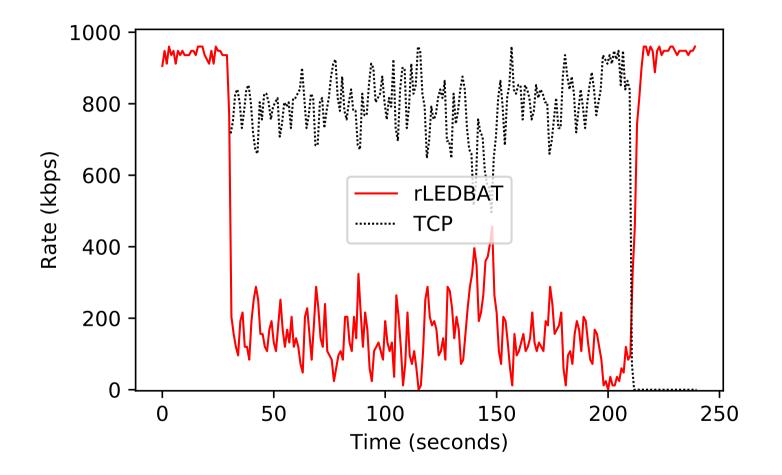

Other design choices

- Interledbat fairness: AIMD
- Reacting to packet loss: MD
- Bootstrapping: let flow control to take over
- Path changes: similar to LEDBAT

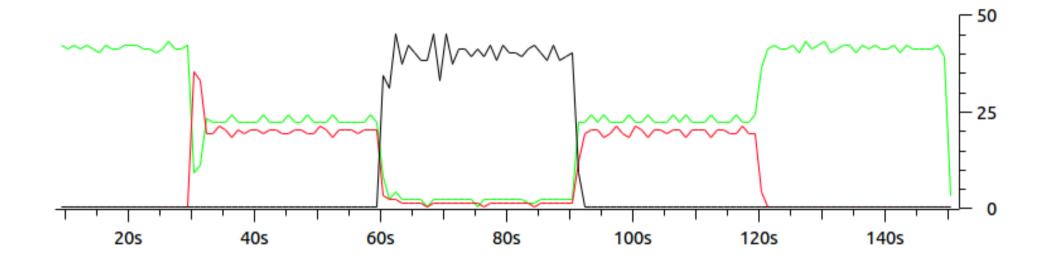

Experimental setup rLEDBAT implementation available rledbat.netcom.it.uc3m.es

rLEDBAT and VOIP


Inter-rLEDBAT fairness


rLEDBAT solo performance

RTT	Capacity used	Theory Approx.
74 ms	944 kbps (99%)	100 %
124ms	922 kbps 96.6%)	99 %
174 ms	886 kbps (92.8%)	97 %
224 ms	857 kbps (89.8%)	95 %
274 ms	838 kbps (87%)	93 %
324 ms	819 kbps (85%)	91 %
374 ms	815 kbps (85%)	90%
424 ms	809 kbps (84%)	88%
474 ms	788 kbps (82%)	87%


Interference with TCP – delay based

Interference with TCP – loss based

Interaction with LEDBAT++

Wrap up

• Is ICCRG interested in working on this?