
MPTCP Inactivity Time Option
and Subflow Rate Limit Option

Viet-Hoang Tran, Olivier Bonaventure
UCLouvain

IETF 105
July 22, 2019

Monreal

MPTCP Inactivity Time Option

MPTCP Inactivity Timeout (ITO)
Client Server

3-way handshake
(MP_CAPABLE)

TCP-RST

...

Keep the MPTCP
session until when?

 Close subflow

MPTCP Inactivity Timeout (ITO)

RFC6824(-bis) does not specify
how long MPTCP hosts should
maintain idle sessions.

Inactivity time:
duration that an MPTCP session
has no established subflow.

Client Server

3-way handshake
(MP_CAPABLE)

TCP-RST

...

Keep the MPTCP
session until when?

 Close subflow

TCP does not recommend a default value for idle connection, but:

RFC1122: TCP KeepAlive >= 2 hours

RFC5382: NAT timeout >= 2 hours + 4 minutes

Recommend a Default ITO?

1. Hosts want to keep the session alive through transient failures
→ Request its peer for an enough ITO.

For TCP, this does not work due to NAT timeout

For MPTCP, NAT is not a problem

2. Highly-loaded servers quickly terminate unused MPTCP sessions
by setting a small local ITO.
→ May signal its clients that idle sessions will be closed shortly.

Use cases

ITO Option Format
 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

+---------------+---------------+-------+-------+-------------------------------+

| Kind | Length = 5 |Subtype| (rsv) | Inactivity Timeout (16 bit) |

+---------------+---------------+-------+-------+-------------------------------+

Timeout Range:
Min = 0: remove session immediately when there is no active subflow
Max = 2^16-1 seconds ~ 18 hours

ITO option is indicative: Local policy could override this request

ITO option is exchanged unreliably

 To improve the delivery: - May send X times per second/RTT/lifetime?

- Or attach it to a Sequence Number

Subflow Rate Limit Option

Motivation
Mobile users usually have limited cellular data quota

They want to use cellular networks, but still need to
 limit the monetary cost, or
 reserve the data quota.

But: traffic are mostly downstreamed, which clients cannot control.

→ Client could request the server a max sending rate on a subflow.

Option Format
Requested Rate (32 bits) is specified in IEEE-754 floating-point format

Range: from 1.2*10−38 to 3.4*1038

Unit: Kbps
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |S| Exponent | Fraction |
 +-+

SRL option is indicative and unreliable

Linux Implementation Prototype

Used eBPF to quickly testing

new MPTCP options

Based on TCP-BPF
(in mainline Linux)

Experiment: Capping on second subflow

Request rate-limit of Zero?
Allow peers to disable a subflow temporarily

Improve reliability
May send X times per second/RTT/lifetime?
Should the server respond to the request?

Duration of rate-limit policy
until the end of connection?
or allow clients to specify?

Combine with other use cases?
backup when latency/bw satisfied
traffic ratio among subflows
cap max amount of data

Open Questions

Attacker could throttle the rate on a subflow.

But, it could instead drop packets or inject TCP-RST or MP-FASTCLOSE.

Inserting option is one-off, while dropping packets needs continuity.
For specialized hardware, which one is easier?

Countermeasures

- Use HMAC? cannot protect initial path, but make it harder
- Receivers cap the values in a safe range

SRL Option: Security Considerations

ITO Option: Security Consideration
Implementations should define a safe range of values, restricting:

● Local setting by applications
● Received ITO options

May restrict accepting ITO options only from trusted peers.

