The Mathematical Mesh

Phillip Hallam-Baker

Venture Cryptography

Internet security is broken

- We haven't changed our approach
 - Using 1980s techniques to solve 21st century problems
- Users find security too much effort
 - Can't solve that by sending users on a two day course
- Applications don't solve the real security problems
 - Data at Rest

Meta-Cryptography

- 1 Key cryptography was good
- 2 was better
- Using 3 or more keys allows separation of duties
 - The cloud service can control who can decrypt, but can't decrypt

The Mesh is a platform

- What do we need to support Muti-party decryption?
 - Managing private keys across a user's (proliferating) devices
 - Acquiring and maintaining the public keys of other users (and services)
 - Secure control plane messaging
- Each component is designed for re-use
 - Engineered as if a stand-alone features
 - Reducing the size of the Mesh code
 - Increasing applicability
 - Deployment strategy identifies applications with unilateral benefit

Principal technology platforms

• UDF

- Naming & Addressing
- DARE Envelope & Container
 - Message layer security 'PCKS#7 with blockchain on steroids using JOSE)
 - Persistence model, catalogs and spools
- Mesh Assertions
 - Describe users, devices, accounts, services and connections between
- Mesh Messaging
 - Control plane messaging. End to end secure, traffic analysis resistant

UDF Uniform Data Fingerprint

- Represent any cryptographic output as a Base32 sequence
 - Content Digest
 - MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4 (SHA-2)
 - KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN (SHA-3)
 - Nonce
 - ND2H-S6YN-5PEI-7VCC-EABR-WQLC-QVTQ
 - Encryption key master secret
 - EBYX-SP24-RAEZ-BYVG-FJEN-TNW6-EYQQ
 - Shamir Secret Share
 - SAQH-5KQR-XCVN-UVWY-OJNB-QTG3-MJSM-I
 - HMAC result
 - ADUE-MT5J-2IED-MT4Y-5C2B-7FK7-UJQW

Express as a URI

- udf://example.com/EBE4-KH3S-2YBP-LVBR-Y5SW-LGH4-IR2G-HG
- UDF (EBE4-KH3S-2YBP-LVBR-Y5SW-LGH4-IR2G-HG) =
 - MB4X-FCXI-V5LX-LKMP-706T-DEOS-NWSJ-DXJN-QOGM-WOFZ-INCN-QBAY-QBLC-XA5K
- https://example.com/.well-known/mmm-udf/MB4X-FCXI-V5LX-LKMP-706T-DEOS-NWSJ-DXJN-QOGM-WOFZ-INCN-QBAY-QBLC-XA5K

Encode as a QR code

Alice May Brock

Restauranteur

Great Barrington, Massachusetts

DARE Envelope / Container

• Envelope

- PKCS #7 in JOSE / JSON-B
- Support multiple key decryption (Alice+Service)
- Container
 - Append only sequence of DARE Envelopes
 - Blockchain/Merkle-Tree type capabilities
 - Incremental Encryption
 - Apply one key exchange to multiple envelopes

Applications

- Mesh Account
 - Catalog (set of items)
 - Passwords / Contacts / Bookmarks / Applications
 - Spools (list of messages)
- Log format for GDPR compliance
- ZIP Archive replacement

Radical Distrust

- Mesh Accounts belong to the user
 - They can be bound to a service ID
 - The user can change that at any time
 - Low switching cost
- Use <u>alice@example.com</u> to discover a trust relationship
 - Use UDF digest to persist it

Mesh Messaging

- Secure Control plane
 - End-to-end secure
 - Anti-Abuse measures built in
 - Traffic Analysis Resistant
 - Messages padded/truncated at 32KB in transport
- Applications
 - Secure contact exchange
 - Two Factor Authentication (OTP Code)
 - Confirmation Service (Semantic binding to action)

Where do we go from here?

- IETF / W3C / OASIS / New?
- If IETF
 - Is this actually IRTF?
 - Start a working group? More than one?
 - Experimental?
- Will begin deploying this year
 - End-to-end secure password manager
 - SSH / OpenPGP / S/MIME configurator