
TLS Metadata for Load
Balancers
draft-schwartz-tls-lb

Ben Schwartz, Google LLC
IETF 105

What is a “load balancer”?
● Definition: A load balancer is a server that forwards connections from clients

to appropriate backends.
● Balancing loads is the main purpose but not the only purpose: also DDoS

defense, access control, etc.
● A load balancer can operate at many levels in the protocol stack. We use

different terms depending on which protocol the load balancer “terminates”:
○ IP: “ECMP router”
○ TCP: “TCP load balancer”, “reverse tunnel”
○ SNI: “SNI proxy”
○ TLS: “TLS load balancer”, “TLS termination proxy”
○ HTTP: “Reverse proxy”, “CDN”

● Goal: Make it easier and safer to use SNI proxies, to reduce the need for
TLS termination by load balancers.

Motivating use case: Full Split-mode ESNI

Shared
mode Client Server

(CDN)
ESNI Private Key
TLS Private Key

Partial split
mode Client Load balancer Backend

server

Full split
mode Client Load balancer Backend

server

Have to give
your private key
to the server!

ESNI private key
is a widely
shared secret!

Backend can’t
reply without the
ESNI nonce &
decrypted SNI

State of the art: PROXY protocol

● For TCP reverse tunnels.
● Prepends info in cleartext (even if the contents are encrypted)

○ Not encrypted or authenticated in any way.
● Originally only carried the client IP and port.

○ Now extended to forward ALPN, SNI, etc. (when used by a TLS-terminating load balancer)
● Implemented by HAProxy, NGINX, Stunnel, Postfix, Squid, Jetty, etc.
● Deployed by Amazon Elastic Load Balancer, Google Cloud Load Balancing,

etc.

PROXY TCP4 192.168.0.1 192.168.0.11 56324 443\r\n
GET / HTTP/1.1\r\n
Host: www.example.com\r\n
\r\n

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-proxy-protocol.html#proxy-protocol
https://cloud.google.com/load-balancing/docs/tcp/setting-up-tcp#proxy-protocol

Proposed architecture: Like PROXY but encrypted
1. Load balancer and backend share a long-lived symmetric* PSK.
2. On each connection, the load balancer packages the needed metadata into a

ProxyData struct.
3. Load balancer prepends ProxyData, AEAD encrypted and bound to the

ClientHello.
4. Backend decrypts and uses the info.

Encrypted
ProxyData

ClientHello and remainder of
upstream TCP data, verbatim.

Load balancer Backend

*Static Diffie-Hellman is also possible.

Alternative architectures: TLS-in-TLS

+ Defends ESNI privacy against a trivial two-point surveillance attack.
+ Makes padding possible, for stronger defenses in the future

+ Potentially immune to replay attacks (after 0-RTT)
+ Offers a clear way to implement a public, free load balancer (no PSK)
- Greatly increases load balancer costs

- 16-32x based on AWS prices

- Not clear how to extend to QUIC

ProxyData ClientHello and remainder of
upstream TCP data, verbatim.

Load balancer Backend

New TLS session

https://aws.amazon.com/elasticloadbalancing/pricing/

Alternative architectures: ESNI Oracle

+ Excellent architectural clarity
- Imposes a latency penalty OR creates a lot of potential complexity

- e.g. H2 PUSH and a cache on the backend

- Not clear how to support other metadata (e.g. client IP)
- Might require a very fast database on the load balancer

ClientHello and remainder of
upstream TCP data, verbatim.

Load balancer Backend

GET /oracle?esni=NzYsMTgyLDg...
Host: load-balancer.example
Authorization: Bearer LDcwLDI3k...

Backend Load balancer

Questions for the group
● Should we try to standardize a solution?
● Which architecture should we pursue?

