Some Congestion Experienced

draft-morton-tsvwg-sce-00

Jonathan Morton
Pete Heist
Rodney W Grimes

Some Congestion Experienced

Binary	Keyword		References
 00 01 10 11	Not-ECT (Not ECN-Capable Transport) SCE (Some Congestion Experienced) ECT (ECN-Capable Transport) CE (Congestion Experienced)		<pre>[RFC3168] [This Internet-draft] [RFC3168] [RFC3168]</pre>
++	-+++	++	++
	E C	E U A	P R S F
Heade	r Length Reserved S W	C R C	S S Y I
	C R	E G K	H T N N
	E		
++	-+++++	++	++

- Redefines ECT(I) as SCE, a high-fidelity congestion signal.
- Retains all other RFC-3168 details, for full backwards compatibility.
- Uses the former NS bit as ESCE, for TCP feedback.
- Multiple instances of running code available!

SCE Design Philosophy

"First, do no harm."

Hippocrates

"Heterogeneity is inevitable and must be supported by design."

RFC-1958 § 3.1

"Effective congestion control is REQUIRED."

RFC-8311 § 5.2.1

SCE Backwards Compatibility

- Normal AIMD principles apply
 - Normal cwnd growth rate (à la Reno, CUBIC).
 - Response to loss is TCP friendly.
 - Response to CE marks is RFC-3168 compliant.
- Existing RFC-3168 middlebox AQMs treat SCE marks as ECT
 - Can still mark them with CE.
- Existing endpoints ignore SCE marks and NS bit
 - Transparent fallback to RFC-3168.
- Meaning of CE preserved
 - SCE can be a soft "cruise control" signal.
 - Advantage over DCTCP.

TCP delivery rate with ping sce cc:cubic,reno-sce q:single w/o sce bw:50Mbit rtt:80ms

SCE: Signal Network =>> Endpoints

- High-fidelity congestion control signal
 - Many marks per RTT, versus many RTTs per mark, in steady state.
- Easily added to existing AQM algorithms
 - Easiest if FQ is also implemented.
 - Threshold function is valid.
 - Ramp functions perform better.
- RFC-3168 CE marks still relevant
 - Large reductions in path capacity.
 - Backwards compatibility.

SCE / ESCE Response

- Former NS bit redefined as ESCE
 - Orthogonal to RFC-3168 ECE & CWR bits.
 - When set, indicates currently acked segment(s) carried SCE mark.
 - Receiver logic is very simple, immediate and almost stateless.
- Sender responds:
 - MAY ignore (backwards compatibility).
 - DCTCP-SCE reduces cwnd by 1/2 segment per marked segment.
 - Reno-SCE reduces cwnd by $1/\sqrt{cwnd}$ segments per marked segment.
 - CUBIC-SCE also reduces the growth rate if in cubic growth phase.
 - (TODO: fix bugs in CUBIC-SCE.)
- We exit slow-start on a single SCE mark
 - Proceed with congestion avoidance.

TCP delivery rate with ping and TCP RTT sce cc:cubic,reno-sce q:fair w/ sce bw:50Mbit rtt:80ms

SCE: Dual Queues

We prefer FQ. However...

- Any traffic classifier may be used to direct SCE traffic into a second, SCE-specialised queue.
 - Such as a DSCP.
 - "Conventional" traffic defaults to the first queue.
- Robustness against misclassification:
 - (eg. DSCPs bleached en route)
 - "Conventional" queue SHOULD NOT mark with SCE.
 - Misclassified SCE traffic adopts RFC-3168 behaviour & coexists naturally.
- Major benefit of unambiguous signalling via the extra codepoint!

SCE: Single Queue

We prefer FQ. However...

As standard, SCE yields very politely to conventional traffic.

This may actually be useful to some people wanting a "scavenging" transport.

SCE: Single Queue

We prefer FQ. However...

By modifying the SCE marking probability ramp, some of SCE's benefits <u>can</u> be realised <u>without</u> requiring multiple queues.

There are some compromises in performance, and the current implementation is not knob-free, but SCE <u>can</u> coexist fairly with conventional traffic and run smoothly by itself.

The ramp parameters are chosen at the single-queue bottleneck node in question.

TCP delivery rate with ping sce cc:cubic,reno-sce q:sce-thresh-12 bw:50Mbit rtt:80ms

TCP delivery rate with ping sce cc:reno-sce,reno-sce q:sce-thresh-12 bw:50Mbit rtt:80ms

SCE: Running Code

- At IETF-104 (Prague), we had:
 - FreeBSD sender (DCTCP-SCE)
 - FreeBSD receiver (rudimentary SCE ⇒ ESCE echo)
 - Linux middlebox AQMs (fq_codel, Cake)
- At IETF-105 (Montreal), we have:
 - Linux senders (DCTCP-SCE, Reno-SCE)
 - Linux receiver (accurate SCE ⇒ ESCE transform)
 - FreeBSD middlebox AQM (thanks to Loganaden Velvindron)
- Technically, this is multiple instances of running code...
- Work continues to mature, diversify, and characterise.

Notes on TCP Pacing

- High fidelity congestion signalling is very sensitive to burstiness.
 - Bursts collect transiently in queue and cause SCE signalling.
 - Ack clocking is not sufficient, especially with delayed acks.
 - Pacing is effectively <u>mandatory</u>.
- Linux exempts first 10 packets from pacing.
 - Prevents slow-start from working with SCE.
 - We patched that out of our kernel one-line fix.
- Transition from SS to CA phase needs halving of send rate.
 - SS doubles per RTT first response delayed by one RTT.
 - Traditionally provided by first loss/CE response.
 - We use modified pacing scale factors: SS=100% CA=40%.

Some Congestion Experienced

Any questions?