Committing Authenticated Encryption

- What is it? How is it different than regular AE?
- Why is it important? What goes wrong without it?
- Why is an RFC needed? What should the RFC say?

Committing authenticated encryption (cAE):

AE where it's hard to find a ciphertext with multiple correct decryptions. cAE => ciphertexts are **binding commitments**

"Physical" Encryption

Many people think of authenticated encryption as a lock box. Fine intuition, if keys are random and hidden:

- The box hides what's inside it (confidentiality)
- Can't change already-locked box (integrity)

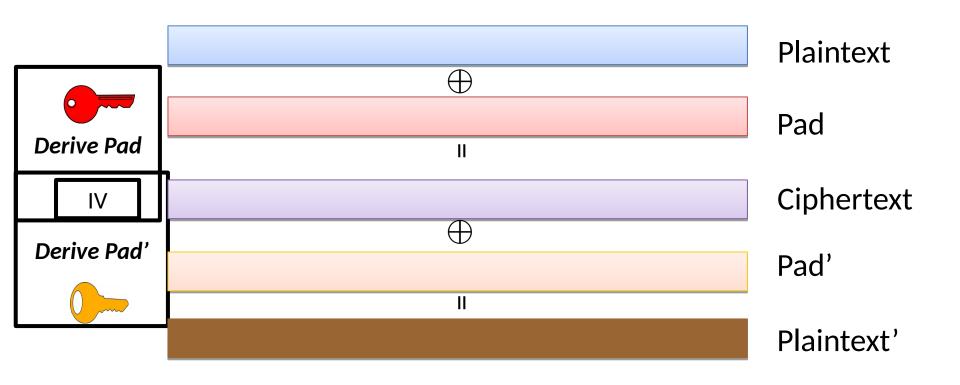
This intuition fails badly if keys can be adversarial.

"Physical" Encryption

This intuition fails badly if **keys can be adversarial**. AE has no security with attacker control of keys: ciphertexts can have multiple correct decryptions. cAE = AE + **binds** attacker to a single decryption

- What is it? How is it different than regular AE?
- Why is it important? What goes wrong without it?
- Why is an RFC needed? What should the RFC say?

Committing authenticated encryption (cAE):


AE where it's hard to find a ciphertext with multiple correct decryptions. cAE => ciphertexts are **binding commitments**

CTR mode is not committing

Any ciphertext can be decrypted under any key.

Adding a MAC does not help:

Galois/Counter Mode (GCM) is not committing.

CTR mode is not committing

Any ciphertext can be decrypted under any key.

Adding a MAC does not help:

Galois/Counter Mode (GCM) is not committing.

Scheme	cAE?
AES-GCM	No
ChaCha20/Poly1305	No
OCB	No
Encrypt-then-HMAC (distinct keys)	No
Encrypt-then-HMAC (derived keys)	Yes

Places where cAE is needed

- Message franking (abuse reporting for E2EE
 - Lack of cAE led to [DGRW] "invisible salamander" bypass:
 GCM ciphertext with two image decryptions
 - Similar issues found elsewhere after [DGRW]
- OPAQUE (possible aPAKE standard) fragile without cAE
 - Active MitM of login could learn password from size-N dictionary via log(N) interactions with client (unpublished)
 - Needed in other protocols? (ongoing work)
- cAE ensures transcript consistency in group messaging (MLS may use)
- Widely used in research that may be deployed in the future

Innocuous BMP image

- What is it? How is it different than regular AE?
- Why is it important? What goes wrong without it?
- Why is an RFC needed? What should the RFC say?

Committing authenticated encryption (cAE):

AE where it's hard to find a ciphertext with multiple correct decryptions. cAE => ciphertexts are **binding commitments**

RFC means fewer mistakes, better designs

- Anecdotally, misunderstanding is widespread
 - Practitioners and researchers alike make mistakes
- cAE can be tricky to build, many pitfalls
 - Checking multiple values in decryption
 => distinguishable failures possible!
- An RFC can dispel confusion and mandate good schemes

Some cAE constructions from research literature, but many "knobs" to tweak w/r/t concrete choices

Need guidance on threat models, requirements, use cases!