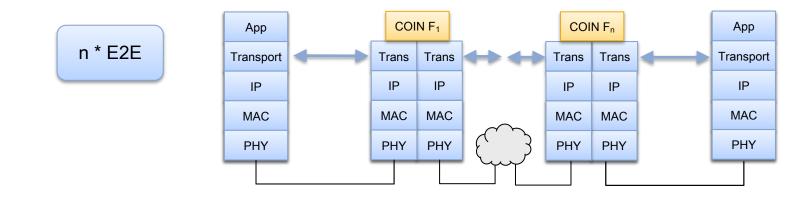


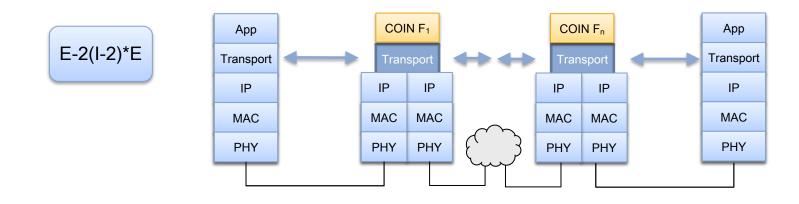
Transport Issues of Computing in the Network

https://www.ietf.org/id/draft-kunze-coinrg-transport-issues-00.txt


Ike Kunze, Klaus Wehrle

Classical End-to-end Principle

- Original design principle
 - All computing (=modifying application payload) is done at the network endpoints
 - Classic notion of an end-2-end transport session
 - Except for "some" transparent middleboxes changing headers


End-to-end Principle with Computing in the Network?

COIN

- Purposefully and explicitly process packets in the network (either Edge-clouds or on-path)
- Breaking the end-to-end principle between source and destination
 - Here: Concatenation of multiple transport sessions: E-2-E + E-2-E ... + E-2-E (basically service chaining)
 - Makes transport issues easier, but looses E-2-E notion between source and destination
 - Concatenation of intermediate end-points will then be an application issue

End-to-end Principle with Computing in the Network?

COIN

- Purposefully and explicitly process packets in the network (either Edge-clouds or on-path)
- Breaking the end-to-end principle between source and destination
 - Here: Keeping E-to-E notion between source and destination
 - Requires new or adapted transport protocols E-I₁-..-I_n-E (End-to-Intermediate-to-Interm.-...-to-End)
 - Concatenation of intermediate elements is handled on layer 3 and 4, will be configured by application via API

• There is no simple solution

Start a discussion about how the issues should be addressed

- Connecting discussions of different groups of the IETF/IRTF
- Plus issues that are not addressed yet

• This draft as a starting point, raising open issues

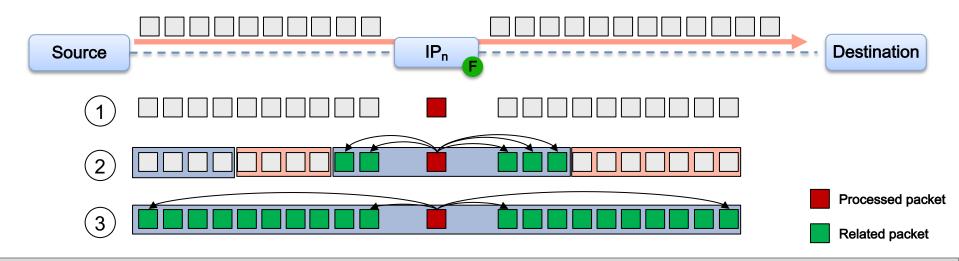
- Addressing
- Flow Granularity
- Authentication
- Security
- Advanced Transport Features

• Addressing options

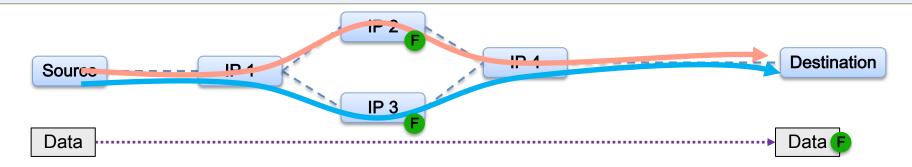
- Whom to address?
 - Address based: sequence of IP + port?
 - Content/function based: specify the compute function? Anycast mode?
 - Or location-based?
- How strict to address?
 - Loose routing
 - Strict routing
- What kind of communication pattern among functional units?
 - ■1:1, 1:n, n:m

SPRING WG: Segment Routing using MPLS and IPv6

• What is the processing granularity?

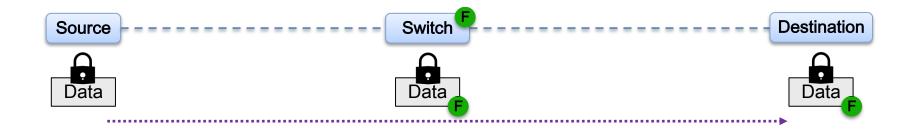

Packet-based?

- \rightarrow no/little state required in processing nodes
- \rightarrow medium/high state required ...


Stream-based?

Message-based?

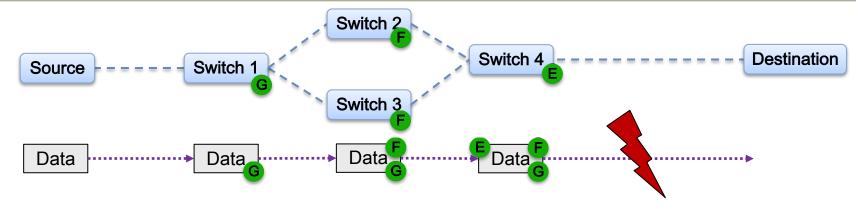
 \rightarrow state required on application (low to high state required)


IETF 106, Nov. 2019

• Which switch has done the changes?

- What was changed?
- Who made the changes?
- How synchronizing states?
- How to authenticate packet modifications made by intermediate nodes?

ACE WG (Authentication and Authorization for Constrained Environments)


In-network processing currently working on plain text data

- Encrypted payload is an option that should not be ruled out
- New transport protocols (eg. QUIC) encrypt headers & payload

How can in-network computing work on encrypted data?

- Decryption in intermediate nodes?
- Option headers with payload for intermediate nodes? Possibly encrypted with session keys?
- Homomorphic encryption?

Advanced Transport Features - Retransmissions

- Who does the retransmission?
 - 1. Sender
 - 2. Last successful position
- How to deal with (changed) state in the intermediate nodes
 when packet is dropped later on the path?
 - Do we want the notion of a transaction that should be revocable?

LOOPS BOF (Local Optimizations on Path Segments) - Local packet loss recovery

IETF 106, Nov. 2019

- Other features that cause similar questions of "who is in charge?"
 - Congestion control
 - Flow control
 - Flow ordering/Sequence numbers
- Different features impose different requirements
- Which set of transport features should be supported by COIN?
 - Depends on application ...

Required transport feature set depends on application scenario

Datacenter

- ► Full control over network
- High load
- Reliable communication needed
 - Retransmissions
 - Congestion control

Industrial networks

- Full control over network
- Low-latency communication
- Reliable communication needed
 - No retransmissions

Internet

- Little to no control over the whole network
- Untrusted nodes involved
- Encrypted traffic
- Diverse application needs

Conclusion

Solutions to the transport issues vital for the success of COIN

- One-fits-all solution unlikely
- Highly application-specific requirements

Create awareness and consider expertise of other IETF/IRTF groups!

- Addressing: SPRING WG
- Authentication: ACE WG
- Retransmissions: LOOPS BOF

▶ ...

• Goal until next meeting:

Collect feedback on raised questions and suggest first transport solutions