
Flow Balance & ICN Congestion 
Control:

draft-oran-icnrg-flowbalance-01

Dave Oran
Network Systems Research & Design



Outline

• Background on flow balance & its connection 
to congestion control

• Counting Interests vs. counting bytes
• Protocol Proposal



Flow Balance

• One Interest produces Exactly One Data
– Can’t just just inject Data packets

• Data messages bounded by L3 MTU (Not L2 MTU)
– For NDN, this is in theory unbounded (MTU size is a 

TLV)
• In practice, compiled in limit of implementation is 4K bytes

– For CCNx, maximum data packet size is 64K bytes

• Fragmentation protocols have been defined to 
stay within link MTU



So, what’s the problem?

• Small data objects inconvenient for some 
applications – natural object size much larger 
than Link MTU
– e.g. video frames

• Applications with very small data objects 
– VoIP, Sensor Readings, etc.

• With no info, conservative resource allocation 
assumes MTU-sized packets

• Per-packet crypto overhead
– e.g. signatures (unless you use Manifests)
– Hashing small packets instead of larger ones



Why doesn’t Fragmentation solve this?

• Possible Fragmentation schemes:
– end-to-end
– hop-by-hop with reassembly at every hop
– hop-by-hop with cut-through of individual 

fragments

• …but this doesn’t change flow balance
– Buffer memory and link bandwidth still must be 

set aside for maximum-sized data objects to avoid 
congestion collapse under overload.



Design Considerations
• Some means required to allocate link bandwidth For Data 

messages
– upper bound larger than a PMTU
– and a lower bound lower than single link MTU

• Handle moderately sized objects (e.g. <64K bytes), not 
really big ones (≫100k bytes)
– finding the right tradeoff between handling a large number of 

small data objects versus a single very large data object when 
allocating link and buffer resources becomes intractable.

• Since in many congestion control schemes, resources are 
allocated for returning Data based on arriving Interests, this 
information must be available in Interest messages.



Solution

• Simple – just add an Expected Data Size TLV to 
Interest messages

• Use this to calculate bandwidth allocation for 
bandwidth on the return hop instead of just 
counting all Interests equally.

• Except… it’s not so simple



Problem One – how to know size
• Sometimes easy:
– For sensor and other Internet-of-Things applications: the 

data is instrument readings which have fixed known size.
– In video streaming information is available ahead of time 

to clients in a manifest containing names of segments (or 
individual frames) of video and audio and their sizes.

– VoIP uses vocoders that typically employ fixed-size audio 
frames. Therefore, their size is known either a priori, or via 
an initialization exchange at the start of an audio session.

• But sometimes not…
– What if the consumer has to guess?
– Need to consider both honest and malicious consumers



Problem Two: Data is too big
• Extra data could result in both unfair bandwidth 

allocation and data loss under congestion
• Three choices:

1. Forward the data anyway, which is safe under non-
congestion conditions, but unfair and possibly unstable 
when the output link is congested

2. Forward the data when un-congested (e.g. by assessing 
output queue depth) but drop it when congested

3. Always drop the data, as a way of "punishing" the 
requester for the mis-estimate.

• Need feedback though
– Introduce a “MTU_TOO_LARGE” error code for Interest 

Return message in cases 2 & 3.



Problem Three: Data is too small
• Clearly no Congestion caused

– but resources are inefficiently allocated because not all of the 
set-aside bandwidth for the returning data object gets used.

• Possible remediations
– Ignore the problem
– account for the usage according to the larger expected data size 

rather than actual returned data size (if forwarder does resource 
accounting)

– Attempt to adjust congestion control parameters
• Identify future Interests for the same object or closely related objects and allocate 

resources based on some retained state about the actual size of prior objects
• Police consumer behavior and decrease the expected data size in one or more future 

Interests to compensate (TLV is a hop-by-hop header)
• For small objects, do more optimistic resource allocation on the links on the presumption 

that there will be some "slack" due to clients overestimating data object size.



Problem Four: Interest Aggregation
• Perennial bugaboo since multiple Interests for same object can 

carry different parameters. Two cases to consider:
1. Arriving interest carries expected data size smaller than any of the values 

associated with the PIT entry.
2. Arriving interest carries an expected data size larger than any of the values 

associated with the PIT entry.
• Possible approaches:

– Pick default based on link MTU of the face on which the Interest arrived and use 
that for all Interests lacking an expected data size. This is likely to be most 
compatible with simple interest counting which would rate limit all incoming 
interests equally

– Configure some values for given Name prefixes that have known sizes. This may be 
appropriate for dedicated forwarders supporting single use cases, such as:
• A forwarder handling IoT sensors sending very small Data packets
• A forwarder handling real-time video with large average Data packets that exceed link 

MTU and are routinely fragmented
• A forwarder doing voice trunking where the vocoders produce moderate sized packets, 

still much smaller than the link MTU



Problem Five: Malicious Actors
• Consumer intentionally over-estimates data size with the goal of 

preventing other users from using the bandwidth.
– Deal with same way as for honest actors

• Consumer intentionally under-estimates data size with the goal having its 
Interest processed while the other aggregated interests are not processed, 
thereby causing T_MTU_TOO_LARGE errors and denying service to the 
other consumers. Mitigations:
– (Simplest) Treat similarly to consumer mounting interest flooding attack
– Remembers in the PIT entry not only the expected data size of the Interest it forwarded, 

but the maximum of the expected data size of the other Interests it aggregated. If a 
T_MTU_TOO_LARGE error comes back, instead of propagating it, treat as a transient 
error, drop the Interest Return, and re-forward the Interest using the maximum 
expected data size in the PIT (assuming it is is bigger). This recovers from the error, but 
the attacker can still cause an extra round trip to the producer or to an upstream 
forwarder with a copy of the data in its Content Store.



Proposed Encoding


