Status and Issues for the
“Client-Server” Suite of Drafts

raft-ietf-netconf-crypto-types-12
raft-ietf-netconf-trust-anchors-07
raft-ietf-netconf-keystore-14
raft-ietf-netconf-tcp-client-server-03
raft-ietf-netconf-ssh-client-server-16
raft-ietf-netconf-tls-client-server-16
raft-ietf-netconf-http-client-server-00
raft-ietf-netconf-netconf-client-server-16
raft-ietf-netconf-restconf-client-server-16

NETCONF WG
IETF 106 (Singapore)

Since IETF 105

All drafts updated and submitted as a set multiple times!

High-level Updates:

crypto-Types: —
- introduction of "key-format" nodes
- removed all non-essential algorithms
- moved remaining algorithms to 3 iana-* modules
- Added a 'config false' "algorithms-supported” list to each of the 3 iana-* modules.

trust-anchors: B try|ng tO LaSt Ca” ASAP

- added PSKs and raw public keys (PSKs now removed)"”

keystore:
- Added PSK and raw-public-key support
- Made the two "generate-*-key" RPCs be "action” statements instead. —

tcp-client-server:

- Moved the common model section to be before the client and server specific sections.
- Added sections "Model Scope” and "Usage Guidelines or Configuring TCP Keep-Alives" to the Common Model section.

ssh-client-server:
- tweaks to if-feature and description statements.

- Updated "server-authentication” and "client-authentication” nodes from being a leaf of type "ts:host-keys-ref" or "ts:certificates-ref" to a container that uses
"ts:local-or-truststore-host-keys-grouping” or "ts:local-or-truststore-certs-grouping”.

tls-client-server:
- tweaks to if-feature and description statements.

- Updated "server-authentication” and "client-authentication” nodes from being a leaf of type "ts:host-keys-ref" or "ts:certificates-ref" to a container that uses
"ts:local-or-truststore-host-keys-grouping” or "ts:local-or-truststore-certs-grouping”.

http-client-server:
- in ietf-http-client, removed "protocol-version” and all but the "basic" authentication scheme.
- in ietf-http-server under /client-authentication, added an ability to configure authentication credentials for the "basic” authentication scheme.

netconf-client-server:
- Added refinement to make "cert-to-name/fingerprint” be mandatory false.
- Commented out refinement to "tls-server-grouping/client-authentication” until a better "must” expression is defined.
- Refactored both the client and server modules similar to how the ietf-restconf-server module was refactored in -13 presented in Montreal.

restconf-client-server:
- Added refinement to make "cert-to-name/fingerprint” be mandatory false.
- Commented out refinement to "tls-server-grouping/client-authentication” until a better "must” expression is defined.
- Refactored both the client and server modules similar to how the ietf-restconf-server module was refactored in -13 presented in Montreal.

2

This Presentation’'s Focus

1. Key formats

2. Algorithms

3. Raw public keys and pre-shared keys

4. Client authentication: required-or-optional
5. Client authentication: local-or-external

6. Cert-to-name fingerprints

Begin Discussion

Key-Formats

New Key-Format [dentities

Indicates a key's format/structure/encoding

In |etf'CryptO'typeS : - NOT its algorithm (at least, not intentionally)
Enables key types (e.g., symmetric key) to be
key—format expressed in different ways (OctetString vs.
_ OneSymmetricKey).
public-key
ssh-public-key It MAY be able to support encoding variations
subject-public-key-info (DER vs PEM, and CMS vs. multi-part PEM).

private-key-format
rsa-private-key
ec-private-key
one-asymmetric-key

encrypted-private-key if-feature

symmetric-key
octet-string-key
one-symmetric-key

encrypted-symmetric-key if-feature

Updated "Key" Groupings

grouping public-key-grouping {
leaf algorithm {

type iasa:asymmetric-algorithm-type; grouping symmetric-key-grouping {
. leaf algorithm {
¥ type isa:symmetric—algorithm-type;
leaf publlc key format .
+\ idontitvreaf S
L_y'J\.. J.UL.IILJ.L_YI\.I L }
base public—-key-format; leaf key-format
} type identityref {
) s base symmetric—-key-format;
1
leaf public-key { ... } s
¥ }

choice key-type {
leaf key { ... }

grouping asymmetric-key-pair-grouping { leaf hidden-key{ ... }
uses public-key-grouping; I3
leaf private- key format ¥
4+ idant s Af S }
LyPC J.UCIILJ.L-YI CI 1

base private-key-format;
;
J

, I
choice private-key-type {
leaf private-key { ... }
leaf hidden-private-key{ ... }
¥
I3
} 6

Any thoughts or concerns?

Begin Discussion

Algorithms

Defining a Dictionary of Algorithms

Moved typedefs from ietf-crypto-types to algorithm-specific modules:
* |.e., lana-asymmetric-algs, iana-hash-algs, and iana-symmetric-algs
e easier to understand and maintain.

And each module defines a typedetf:

Only "symmetric" is shown, but
‘asymmetric" and "hash" follow

typedef symmetric-algorithm-type { the same pattern.

type enumeration {

enum aes-128-cbc { ... }
¥
type enumeration {

enum aes-192-cbc { ... }

}

Any thoughts or concerns?

Are "[ANA Templates" Possible’

Goal is that these "iana" modules could be "templatized”
e |.e., automatically maintained by IANA

The idea sounds good, but...
e a quick scan of each list shows a multiplicity of RFCs.

Determining which Algorithms a Server Supports

Each module also defines a config false

list of algorithms supported by the server:
Only "symmetric" is shown, but

‘asymmetric" and "hash" follow

container supported-symmetric-algorithms { the same pattern.

config false;

list supported-symmetric-algorithm {
key algorithm;
leaf algorithm {

, type ; <«— typedef from previous slide
}
}

l.e.: defined in ietf-[ssh/tls]-common (.e., "common" would need to be "implemented")
a total of six lists (i.e., 3 algs x 2 protocols)

cannot use a "leafref" (both due to "config false" as well as being polymorphic)
have the "algorithm" description statement (in crypto-types) say something like:

"It is RECOMMENDED that each protocol (e.g., SSH, TLS, etc.)
makes available a list of the subset of algorithms supported.”

10

Begin Discussion #3

Raw Public Keys and Pre-Shared Keys

Raw Public Keys and Pre-Shared Keys

What's currently published (CT-12, TS-07) Is no longer current.

* An early trusted review identified no need to define new types.

That existing types (and groupings) could be used:
* a "raw-public-key" is the same as existing ct:public-key
a PSK (pre-shared or pairwise-symmetric) key is the same as ct:symmetric-key

So now it look like this:

module: ietf-truststore

t——rw truststore Any thoughts or concerns?
+—rw certificatesx [name] {x509-certificates}?

 should be merged?
|+ ...

+——rw host-keysx [name] {ssh-host-keys}?
|+ ...

+——rw raw-public-keys* [name] {raw-public-keys}?
== .

no PSK because same is necessarily configured in the Keystore

module: ietf-keystore
+——rw keystore

Jlr——rw asymmetric-keys —— SUDDOFJ[S raw *private* keys
+— ...
+——rw symmetric—keys — SUppOFtS PSKs
+— ...

12

RPK and PSK impact on the TLS Model

(RPK/PSK have no impact on the SSH model)

grouping tls-client-grouping
+—— client-identity
| +—— (auth-type)
| +——: (certificate)
| | +—— certificate {x509-certificate-auth}?
| | +———U ks:local-or-keystore—-end-entity—-cert-with—key—grouping
| +——1 (raw-public-key)
| | +—— raw-public-key {raw-public-key-auth}?
| | +———U ks:local-or-keystore—-asymmetric—key—grouping
| +——: (psk)
| +—— psk {psk-auth}?
| +———U ks:local-or-keystore-symmetric—-key—grouping
+—— server—authentication
| +—— ca-certs! {x509-certificate-auth}?
| | +— ...
| +—— server—certs! {x509-certificate-auth}?
| | +— ...
| +—— raw-public-keys! {raw-public-key-auth}?
| +— ..
|

Only the "client" grouping is shown.

The "server" grouping is almost identical
(just swap "client" and "server" throughout)

13

RPK and PSK impact on the NC/RC Models?

If clients identify themselves via RPK or PSK...
e how would servers extract a "username"?

This is a non-issue for clients,
as they *know™ what server
they're connecting to.

Options:
1. Define the "psk-to-name" and "rpk-to-name” maps now? needed?
2. Leave definition for some future update?

To anyone feeling that we should define now, are you willing to drive the discussion?

14

Begin Discussion #4

Client Authentication: local-or-external

15

Client Authentication: local-or-external

In the currently published versions of the SSH and TLS modules:
e there is a "local-or-external” flag to indicate if client-authentication is
defined inside or outside of the data model (i.e., where is the list of clients?)

However, recent on-list discussion led to the following:

Removal of the "choice local-or-external” by:
- Removing the 'external’ case.
- Flattening the 'local’ case.
- Adding a "client-auth-config-supported” feature.

Any objections?

16

Begin Discussion #5

Client authentication: required-or-optional

17

Client Authentication: required-or-optional

In the currently published versions of the TLS and HTTP modules:
e there is a "required-or-optional” flag to indicate if client-authentication

must succeed at that protocol layer or not.
e this because, e.g., RESTCONF auth is TLS and/or HTTP.

However, recent on-list discussion has led to following:

Removal of the "choice required-or-optional” because:
- Code wasn't using the flag so much as keying-off what credentials
had been configured.

- Examples:
- if a trust anchor has been configured, then TLS-auth MUST succeed
- if a password has been configured, then HTTP-auth MUST succeed
- etc.

Any thoughts or concerns?

18

Begin Discussion #6

Cert-to-name Fingerprints

19

Cert-to-name Fingerprints

Both the ietf-[net/rest]conf-server modules use the "cert-to-name" grouping
to map client-certificates to a NC/RC "username”.

This grouping contains a "mandatory true" node call "fingerprint".

However, a very common deployment scenario will have a common strategy
(i.e., all certs are signed the same way), in which case there is a common
extraction-strategy, and hence no need to specify the fingerprint.

Currently, these modules refine the fingerprint "mandatory false”

. (as all things with security)

Any thoughts or concerns?

20

A Thanks for the input! @&

