
draft-ietf-netconf-crypto-types-12
draft-ietf-netconf-trust-anchors-07
draft-ietf-netconf-keystore-14
draft-ietf-netconf-tcp-client-server-03
draft-ietf-netconf-ssh-client-server-16
draft-ietf-netconf-tls-client-server-16
draft-ietf-netconf-http-client-server-00
draft-ietf-netconf-netconf-client-server-16
draft-ietf-netconf-restconf-client-server-16

NETCONF WG  
IETF 106 (Singapore)

Status and Issues for the
“Client-Server” Suite of Drafts

Since IETF 105
All drafts updated and submitted as a set multiple times!
High-level Updates:

crypto-Types:
- introduction of "key-format" nodes
- removed all non-essential algorithms
- moved remaining algorithms to 3 iana-* modules
- Added a 'config false' "algorithms-supported" list to each of the 3 iana-* modules.

trust-anchors:
- added PSKs and raw public keys (PSKs now removed)"

keystore:
- Added PSK and raw-public-key support
- Made the two "generate-*-key" RPCs be "action" statements instead.

tcp-client-server:
- Moved the common model section to be before the client and server specific sections.
- Added sections "Model Scope" and "Usage Guidelines or Configuring TCP Keep-Alives" to the Common Model section.

ssh-client-server:
- tweaks to if-feature and description statements.
- Updated "server-authentication" and "client-authentication" nodes from being a leaf of type "ts:host-keys-ref" or "ts:certificates-ref" to a container that uses

"ts:local-or-truststore-host-keys-grouping" or "ts:local-or-truststore-certs-grouping".

tls-client-server:
- tweaks to if-feature and description statements.
- Updated "server-authentication" and "client-authentication" nodes from being a leaf of type "ts:host-keys-ref" or "ts:certificates-ref" to a container that uses

"ts:local-or-truststore-host-keys-grouping" or "ts:local-or-truststore-certs-grouping".

http-client-server:
- in ietf-http-client, removed "protocol-version" and all but the "basic" authentication scheme.
- in ietf-http-server under /client-authentication, added an ability to configure authentication credentials for the "basic" authentication scheme.

netconf-client-server:
- Added refinement to make "cert-to-name/fingerprint" be mandatory false.
- Commented out refinement to "tls-server-grouping/client-authentication" until a better "must" expression is defined.
- Refactored both the client and server modules similar to how the ietf-restconf-server module was refactored in -13 presented in Montreal.

restconf-client-server:
- Added refinement to make "cert-to-name/fingerprint" be mandatory false.
- Commented out refinement to "tls-server-grouping/client-authentication" until a better "must" expression is defined.
- Refactored both the client and server modules similar to how the ietf-restconf-server module was refactored in -13 presented in Montreal.

trying to Last Call ASAP

!2

1. Key formats

2. Algorithms

3. Raw public keys and pre-shared keys

4. Client authentication: required-or-optional

5. Client authentication: local-or-external

6. Cert-to-name fingerprints

This Presentation's Focus

!3

Begin Discussion #1

Key-Formats

!4

New Key-Format Identities
In ietf-crypto-types :

+ key-format

+ public-key

+ ssh-public-key

+ subject-public-key-info

+ private-key-format

+ rsa-private-key

+ ec-private-key

+ one-asymmetric-key

+ encrypted-private-key

+ symmetric-key

+ octet-string-key

+ one-symmetric-key

+ encrypted-symmetric-key if-feature "one-symmetric-key"

if-feature "one-asymmetric-key"}

}

Indicates a key's format/structure/encoding

- NOT its algorithm (at least, not intentionally)

Enables key types (e.g., symmetric key) to be
expressed in different ways (OctetString vs.
OneSymmetricKey).

It MAY be able to support encoding variations
(DER vs PEM, and CMS vs. multi-part PEM).

!5

Updated "Key" Groupings
grouping symmetric-key-grouping {
 leaf algorithm {
 type isa:symmetric-algorithm-type;
 ...
 }
 leaf key-format {
 type identityref {
 base symmetric-key-format;
 }
 ...
 }
 choice key-type {
 leaf key { ... }
 leaf hidden-key{ ... }
 }
 }
}

grouping public-key-grouping {
 leaf algorithm {
 type iasa:asymmetric-algorithm-type;
 ...
 }
 leaf public-key-format {
 type identityref {
 base public-key-format;
 }
 ...
 }
 leaf public-key { ... }
}

grouping asymmetric-key-pair-grouping {
 uses public-key-grouping;
 leaf private-key-format {
 type identityref {
 base private-key-format;
 }
 ...
 }
 choice private-key-type {
 leaf private-key { ... }
 leaf hidden-private-key{ ... }
 }
 }
} !6

Any thoughts or concerns?

Begin Discussion #2

Algorithms

!7

Defining a Dictionary of Algorithms
Moved typedefs from ietf-crypto-types to algorithm-specific modules:

• i.e., iana-asymmetric-algs, iana-hash-algs, and iana-symmetric-algs

• easier to understand and maintain.

And each module defines a typedef:

typedef symmetric-algorithm-type {
 type enumeration {
 enum aes-128-cbc { ... }
 }
 type enumeration {
 enum aes-192-cbc { ... }
 }
 ...
}

!8

Only "symmetric" is shown, but
"asymmetric" and "hash" follow
the same pattern.

Any thoughts or concerns?

Are "IANA Templates" Possible?

Goal is that these "iana" modules could be "templatized"

• i.e., automatically maintained by IANA

The idea sounds good, but...

• a quick scan of each list shows a multiplicity of RFCs.

- how would IANA know when an algorithm from a new RFC
should be added?

!9

Determining which Algorithms a Server Supports
Each module also defines a config false
list of algorithms supported by the server:

 container supported-symmetric-algorithms {
 config false;
 list supported-symmetric-algorithm {
 key algorithm;
 leaf algorithm {
 type symmetric-algorithm-type;
 }
 }
 }

!10

- typedef from previous slide

1) instead of global lists, have SSH/TLS specific lists?
• i.e.: defined in ietf-[ssh/tls]-common (i.e., "common" would need to be "implemented")

• a total of six lists (i.e., 3 algs x 2 protocols)

2) how are lists to be used?
• cannot use a "leafref" (both due to "config false" as well as being polymorphic)

• have the "algorithm" description statement (in crypto-types) say something like:

"It is RECOMMENDED that each protocol (e.g., SSH, TLS, etc.)

 makes available a list of the subset of algorithms supported."

Only "symmetric" is shown, but
"asymmetric" and "hash" follow
the same pattern.

Begin Discussion #3

Raw Public Keys and Pre-Shared Keys

!11

Raw Public Keys and Pre-Shared Keys
What's currently published (CT-12, TS-07) is no longer current.

• An early trusted review identified no need to define new types.

• That existing types (and groupings) could be used:

• a "raw-public-key" is the same as existing ct:public-key

• a PSK (pre-shared or pairwise-symmetric) key is the same as ct:symmetric-key

So now it look like this:

module: ietf-truststore
 +--rw truststore
 +--rw certificates* [name] {x509-certificates}?
 | +-- ...
 +--rw host-keys* [name] {ssh-host-keys}?
 | +-- ...
 +--rw raw-public-keys* [name] {raw-public-keys}?
 +-- ...

module: ietf-keystore
 +--rw keystore
 +--rw asymmetric-keys
 | +-- ...
 +--rw symmetric-keys
 +-- ...

!12

}
no PSK because same is necessarily configured in the Keystore

- supports raw *private* keys
- supports PSKs

Any thoughts or concerns?

• should these be merged?

RPK and PSK impact on the TLS Model

!13

 grouping tls-client-grouping
 +-- client-identity
 | +-- (auth-type)
 | +--:(certificate)
 | | +-- certificate {x509-certificate-auth}?
 | | +---u ks:local-or-keystore-end-entity-cert-with-key-grouping
 | +--:(raw-public-key)
 | | +-- raw-public-key {raw-public-key-auth}?
 | | +---u ks:local-or-keystore-asymmetric-key-grouping
 | +--:(psk)
 | +-- psk {psk-auth}?
 | +---u ks:local-or-keystore-symmetric-key-grouping
 +-- server-authentication
 | +-- ca-certs! {x509-certificate-auth}?
 | | +-- ...
 | +-- server-certs! {x509-certificate-auth}?
 | | +-- ...
 | +-- raw-public-keys! {raw-public-key-auth}?
 | +-- ...
 |

Only the "client" grouping is shown.
The "server" grouping is almost identical
(just swap "client" and "server" throughout)

(RPK/PSK have no impact on the SSH model)

RPK and PSK impact on the NC/RC Models?

!14

If clients identify themselves via RPK or PSK...

• how would servers extract a "username"?

This is a non-issue for clients,
as they *know* what server
they're connecting to.

Options:

1. Define the "psk-to-name" and "rpk-to-name" maps now? needed?

2. Leave definition for some future update?

To anyone feeling that we should define now, are you willing to drive the discussion?

Begin Discussion #4

Client Authentication: local-or-external

!15

Client Authentication: local-or-external
In the currently published versions of the SSH and TLS modules:

• there is a "local-or-external" flag to indicate if client-authentication is

defined inside or outside of the data model (i.e., where is the list of clients?)

However, recent on-list discussion led to the following:

Removal of the "choice local-or-external" by:

- Removing the 'external' case.
- Flattening the 'local' case.
- Adding a "client-auth-config-supported" feature.

Any objections?

!16

Begin Discussion #5

Client authentication: required-or-optional

!17

Client Authentication: required-or-optional

!18

In the currently published versions of the TLS and HTTP modules:

• there is a "required-or-optional" flag to indicate if client-authentication

must succeed at that protocol layer or not.

• this because, e.g., RESTCONF auth is TLS and/or HTTP.

However, recent on-list discussion has led to following:

Removal of the "choice required-or-optional" because:

- Code wasn't using the flag so much as keying-off what credentials

had been configured.

- Examples:

- if a trust anchor has been configured, then TLS-auth MUST succeed

- if a password has been configured, then HTTP-auth MUST succeed

- etc.

Any thoughts or concerns?

Begin Discussion #6

Cert-to-name Fingerprints

!19

Cert-to-name Fingerprints
Both the ietf-[net/rest]conf-server modules use the "cert-to-name" grouping
to map client-certificates to a NC/RC "username".

This grouping contains a "mandatory true" node call "fingerprint".

However, a very common deployment scenario will have a common strategy
(i.e., all certs are signed the same way), in which case there is a common
extraction-strategy, and hence no need to specify the fingerprint.

Currently, these modules refine the fingerprint "mandatory false"

• doesn't prevent existing behavior

• should be used with care (as all things with security)

!20

Any thoughts or concerns?

🙏 Thanks for the input! ☺

